These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23083243)

  • 1. Optical extinction in a single layer of nanorods.
    Ghenuche P; Vincent G; Laroche M; Bardou N; Haïdar R; Pelouard JL; Collin S
    Phys Rev Lett; 2012 Oct; 109(14):143903. PubMed ID: 23083243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates.
    Chen H; Shao L; Ming T; Woo KC; Man YC; Wang J; Lin HQ
    ACS Nano; 2011 Aug; 5(8):6754-63. PubMed ID: 21786827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells.
    Mallick SB; Agrawal M; Peumans P
    Opt Express; 2010 Mar; 18(6):5691-706. PubMed ID: 20389585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film.
    López-Suárez A; Torres-Torres C; Rangel-Rojo R; Reyes-Esqueda JA; Santana G; Alonso JC; Ortiz A; Oliver A
    Opt Express; 2009 Jun; 17(12):10056-68. PubMed ID: 19506657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers.
    Tamma VA; Cui Y; Zhou J; Park W
    Nanoscale; 2013 Feb; 5(4):1592-602. PubMed ID: 23329115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar harvesting based on perfect absorbing all-dielectric nanoresonators on a mirror.
    Vismara R; Länk NO; Verre R; Käll M; Isabella O; Zeman M
    Opt Express; 2019 Aug; 27(16):A967-A980. PubMed ID: 31510484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods.
    Ni W; Kou X; Yang Z; Wang J
    ACS Nano; 2008 Apr; 2(4):677-86. PubMed ID: 19206598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers.
    Yang ZJ; Zhang ZS; Zhang LH; Li QQ; Hao ZH; Wang QQ
    Opt Lett; 2011 May; 36(9):1542-4. PubMed ID: 21540921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of deep sub-wavelength nanowells by imaging the photon state scattering spectra.
    Liu W; Xiong J; Zhu L; Ye S; Zhao H; Liu J; Zhang H; Hou L; Marsh JH; Dong L; Gao XW; Shi D; Liu X
    Opt Express; 2021 Jan; 29(2):1221-1231. PubMed ID: 33726341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of one-dimensional SiC nanostructures from a glassy buckypaper.
    Ding M; Star A
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):1928-36. PubMed ID: 23427809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scattering and Extinction Torques: How Plasmon Resonances Affect the Orientation Behavior of a Nanorod in Linearly Polarized Light.
    Xu X; Cheng C; Zhang Y; Lei H; Li B
    J Phys Chem Lett; 2016 Jan; 7(2):314-9. PubMed ID: 26720710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic enhancement of the two photon absorption cross section of an organic chromophore using polyelectrolyte-coated gold nanorods.
    Sivapalan ST; Vella JH; Yang TK; Dalton MJ; Swiger RN; Haley JE; Cooper TM; Urbas AM; Tan LS; Murphy CJ
    Langmuir; 2012 Jun; 28(24):9147-54. PubMed ID: 22500968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subwavelength light confinement and enhancement enabled by dissipative dielectric nanostructures.
    Dong K; Deng Y; Wang X; Tom KB; You Z; Yao J
    Opt Lett; 2018 Apr; 43(8):1826-1829. PubMed ID: 29652374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric Nanorod Scattering and its Influence on Material Interfaces.
    Mangalgiri GM; Manley P; Riedel W; Schmid M
    Sci Rep; 2017 Jun; 7(1):4311. PubMed ID: 28655917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanorod arrays as plasmonic cavity resonators.
    Lyvers DP; Moon JM; Kildishev AV; Shalaev VM; Wei A
    ACS Nano; 2008 Dec; 2(12):2569-76. PubMed ID: 19206293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of interfering optical fields in the trapping and melting of gold nanorods and related clusters.
    Deng HD; Li GC; Dai QF; Ouyang M; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 May; 20(10):10963-70. PubMed ID: 22565719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination.
    Pu M; Feng Q; Wang M; Hu C; Huang C; Ma X; Zhao Z; Wang C; Luo X
    Opt Express; 2012 Jan; 20(3):2246-54. PubMed ID: 22330464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photothermal measurement of absorption and scattering losses in thin films excited by surface plasmons.
    Domené EA; Balzarotti F; Bragas AV; Martínez OE
    Opt Lett; 2009 Dec; 34(24):3797-9. PubMed ID: 20016617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape and size effects in the optical properties of metallic nanorods.
    Stefan Kooij E; Poelsema B
    Phys Chem Chem Phys; 2006 Jul; 8(28):3349-57. PubMed ID: 16835684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.