BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23083299)

  • 1. Electrical hypothesis of toxicity of the Cry toxins for mosquito larvae.
    Lemeshko VV; Orduz S
    Biosci Rep; 2013 Jan; 33(1):125-36. PubMed ID: 23083299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential-dependent permeabilization of plasma membrane by the peptide BTM-P1 derived from the Cry11Bb1 protoxin.
    Arias M; Orduz S; Lemeshko VV
    Biochim Biophys Acta; 2009 Feb; 1788(2):532-7. PubMed ID: 19146823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeabilization of mitochondria and red blood cells by polycationic peptides BTM-P1 and retro-BTM-P1.
    Lemeshko VV
    Peptides; 2011 Oct; 32(10):2010-20. PubMed ID: 21907745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of insect susceptibility and larvicidal efficacy of Cry4Ba toxin by calcofluor.
    Leetachewa S; Khomkhum N; Sakdee S; Wang P; Moonsom S
    Parasit Vectors; 2018 Sep; 11(1):515. PubMed ID: 30236155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional
    Nascimento NA; Torres-Quintero MC; Molina SL; Pacheco S; Romão TP; Pereira-Neves A; Soberón M; Bravo A; Silva-Filha MHNL
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 32005737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria permeabilization by a novel polycation peptide BTM-P1.
    Lemeshko VV; Arias M; Orduz S
    J Biol Chem; 2005 Apr; 280(16):15579-86. PubMed ID: 15713682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytolytic activity of peptides derived from the Cry11Bb insecticidal toxin of B. thuringiensis subsp. medellin.
    Rendon-Marin S; Quintero-Gil C; Lemeshko VV; Orduz S
    Arch Biochem Biophys; 2021 Jun; 704():108891. PubMed ID: 33901485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo binding of the Cry11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae).
    Ruiz LM; Segura C; Trujillo J; Orduz S
    Mem Inst Oswaldo Cruz; 2004 Feb; 99(1):73-9. PubMed ID: 15057351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis.
    Canton PE; Cancino-Rodezno A; Gill SS; Soberón M; Bravo A
    BMC Genomics; 2015 Dec; 16():1042. PubMed ID: 26645277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription profiling of resistance to Bti toxins in the mosquito Aedes aegypti using next-generation sequencing.
    Paris M; Melodelima C; Coissac E; Tetreau G; Reynaud S; David JP; Despres L
    J Invertebr Pathol; 2012 Feb; 109(2):201-8. PubMed ID: 22115744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BTM-P1 polycationic peptide biological activity and 3D-dimensional structure.
    Segura C; Guzmán F; Salazar LM; Patarroyo ME; Orduz S; Lemeshko V
    Biochem Biophys Res Commun; 2007 Feb; 353(4):908-14. PubMed ID: 17207468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The combinatory effect of Cyt1Aa flexibility and specificity against dipteran larvae improves the toxicity of Bacillus thuringensis kurstaki toxins.
    Zribi Zghal R; Frikha F; Elleuch J; Darriet F; Chandre F; Jaoua S; Tounsi S
    Int J Biol Macromol; 2019 Feb; 123():42-49. PubMed ID: 30391590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.).
    Guo Z; Gong L; Kang S; Zhou J; Sun D; Qin J; Guo L; Zhu L; Bai Y; Bravo A; Soberón M; Zhang Y
    Pestic Biochem Physiol; 2020 Feb; 163():23-30. PubMed ID: 31973862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut.
    de Barros Moreira Beltrão H; Silva-Filha MH
    FEMS Microbiol Lett; 2007 Jan; 266(2):163-9. PubMed ID: 17132151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins.
    Després L; Stalinski R; Tetreau G; Paris M; Bonin A; Navratil V; Reynaud S; David JP
    BMC Genomics; 2014 Oct; 15(1):926. PubMed ID: 25341495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins.
    Stalinski R; Laporte F; Després L; Tetreau G
    Environ Microbiol; 2016 Mar; 18(3):1022-36. PubMed ID: 26663676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of Lysinibacillus sphaericus binary toxin with mosquito larval gut cells: Binding and internalization.
    Lekakarn H; Promdonkoy B; Boonserm P
    J Invertebr Pathol; 2015 Nov; 132():125-131. PubMed ID: 26408968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical potentiation of the membrane permeabilization by new peptides with anticancer properties.
    Lemeshko VV
    Biochim Biophys Acta; 2013 Mar; 1828(3):1047-56. PubMed ID: 23262194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection.
    Pardo-López L; Soberón M; Bravo A
    FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation pattern and toxicity of the Cry11Bb1 toxin of Bacillus thuringiensis subsp. medellin.
    Segura C; Guzman F; Patarroyo ME; Orduz S
    J Invertebr Pathol; 2000 Jul; 76(1):56-62. PubMed ID: 10963404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.