BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 23083953)

  • 21. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells.
    Zhang ZY; Teoh SH; Chong MS; Schantz JT; Fisk NM; Choolani MA; Chan J
    Stem Cells; 2009 Jan; 27(1):126-37. PubMed ID: 18832592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Platelet-rich plasma/osteoblasts complex induces bone formation via osteoblastic differentiation following subcutaneous transplantation.
    Goto H; Matsuyama T; Miyamoto M; Yonamine Y; Izumi Y
    J Periodontal Res; 2006 Oct; 41(5):455-62. PubMed ID: 16953822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration.
    Qi Y; Niu L; Zhao T; Shi Z; Di T; Feng G; Li J; Huang Z
    Stem Cell Res Ther; 2015 Dec; 6():256. PubMed ID: 26689714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superior osteogenic capacity of different mesenchymal stem cells for bone tissue engineering.
    Wen Y; Jiang B; Cui J; Li G; Yu M; Wang F; Zhang G; Nan X; Yue W; Xu X; Pei X
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Nov; 116(5):e324-32. PubMed ID: 22841430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering.
    Li JH; Liu DY; Zhang FM; Wang F; Zhang WK; Zhang ZT
    Chin Med J (Engl); 2011 Dec; 124(23):4022-8. PubMed ID: 22340336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds.
    Tanaka T; Hirose M; Kotobuki N; Tadokoro M; Ohgushi H; Fukuchi T; Sato J; Seto K
    J Biomed Mater Res A; 2009 Nov; 91(2):428-35. PubMed ID: 18985782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of platelet-rich plasma on proliferation and osteogenic differentiation of bone marrow stem cells in China goats].
    Cheng W; Jin D; Zhao Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Apr; 21(4):386-9. PubMed ID: 17546885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro.
    Shen B; Wei A; Whittaker S; Williams LA; Tao H; Ma DD; Diwan AD
    J Cell Biochem; 2010 Feb; 109(2):406-16. PubMed ID: 19950204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Collagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiation.
    Oh SA; Lee HY; Lee JH; Kim TH; Jang JH; Kim HW; Wall I
    Tissue Eng Part A; 2012 May; 18(9-10):1087-100. PubMed ID: 22145747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors.
    Fedorovich NE; Kuipers E; Gawlitta D; Dhert WJ; Alblas J
    Tissue Eng Part A; 2011 Oct; 17(19-20):2473-86. PubMed ID: 21599540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix.
    Liu G; Li Y; Sun J; Zhou H; Zhang W; Cui L; Cao Y
    Tissue Eng Part A; 2010 Mar; 16(3):971-82. PubMed ID: 19839720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres.
    Man Y; Wang P; Guo Y; Xiang L; Yang Y; Qu Y; Gong P; Deng L
    Biomaterials; 2012 Dec; 33(34):8802-11. PubMed ID: 22981779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteogenic differentiation of bone-marrow-derived stem cells cultured with mixed gelatin and chitooligosaccharide scaffolds.
    Ratanavaraporn J; Damrongsakkul S; Kanokpanont S; Yamamoto M; Tabata Y
    J Biomater Sci Polym Ed; 2011; 22(8):1083-98. PubMed ID: 20615314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combination of Controlled Release Platelet-Rich Plasma Alginate Beads and Bone Morphogenetic Protein-2 Genetically Modified Mesenchymal Stem Cells for Bone Regeneration.
    Fernandes G; Wang C; Yuan X; Liu Z; Dziak R; Yang S
    J Periodontol; 2016 Apr; 87(4):470-80. PubMed ID: 26745613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering.
    E LL; Xu LL; Wu X; Wang DS; Lv Y; Wang JZ; Liu HC
    Tissue Eng Part A; 2010 Sep; 16(9):2927-40. PubMed ID: 20486786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics.
    Vogel JP; Szalay K; Geiger F; Kramer M; Richter W; Kasten P
    Platelets; 2006 Nov; 17(7):462-9. PubMed ID: 17074722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro and in vivo osteogenic potential of bioactive glass-PVA hybrid scaffolds colonized by mesenchymal stem cells.
    Gomide VS; Zonari A; Ocarino NM; Goes AM; Serakides R; Pereira MM
    Biomed Mater; 2012 Feb; 7(1):015004. PubMed ID: 22260840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation.
    Donzelli E; Salvadè A; Mimo P; Viganò M; Morrone M; Papagna R; Carini F; Zaopo A; Miloso M; Baldoni M; Tredici G
    Arch Oral Biol; 2007 Jan; 52(1):64-73. PubMed ID: 17049335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure.
    Bernhardt A; Despang F; Lode A; Demmler A; Hanke T; Gelinsky M
    J Tissue Eng Regen Med; 2009 Jan; 3(1):54-62. PubMed ID: 19012272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate.
    Liu G; Zhao L; Cui L; Liu W; Cao Y
    Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.