These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23084116)

  • 1. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine.
    Liu J; Choe JK; Sasnow Z; Werth CJ; Strathmann TJ
    Water Res; 2013 Jan; 47(1):91-101. PubMed ID: 23084116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate.
    Choe JK; Bergquist AM; Jeong S; Guest JS; Werth CJ; Strathmann TJ
    Water Res; 2015 Sep; 80():267-80. PubMed ID: 26005787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of rhenium speciation on the stability and activity of Re/Pd bimetal catalysts used for perchlorate reduction.
    Choe JK; Shapley JR; Strathmann TJ; Werth CJ
    Environ Sci Technol; 2010 Jun; 44(12):4716-21. PubMed ID: 20481620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perchlorate and nitrate treatment by ion exchange integrated with biological brine treatment.
    Lehman SG; Badruzzaman M; Adham S; Roberts DJ; Clifford DA
    Water Res; 2008 Feb; 42(4-5):969-76. PubMed ID: 17936327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluidized bed reactor for the biological treatment of ion-exchange brine containing perchlorate and nitrate.
    Patel A; Zuo G; Lehman SG; Badruzzaman M; Clifford DA; Roberts DJ
    Water Res; 2008 Oct; 42(16):4291-8. PubMed ID: 18718630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water.
    Bergquist AM; Choe JK; Strathmann TJ; Werth CJ
    Water Res; 2016 Jun; 96():177-87. PubMed ID: 27043747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles.
    Xiong Z; Zhao D; Pan G
    Water Res; 2007 Aug; 41(15):3497-505. PubMed ID: 17597179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery from nitrate-contaminated waste ion exchange brine.
    Huo X; Vanneste J; Cath TY; Strathmann TJ
    Water Res; 2020 May; 175():115688. PubMed ID: 32171095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-enhanced reduction of perchlorate in water with heterogeneous Re-Pd/C catalysts.
    Hurley KD; Zhang Y; Shapley JR
    J Am Chem Soc; 2009 Oct; 131(40):14172-3. PubMed ID: 19772317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of cultures capable of reducing perchlorate and nitrate in high salt solutions.
    Cang Y; Roberts DJ; Clifford DA
    Water Res; 2004; 38(14-15):3322-30. PubMed ID: 15276749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of strong-base anion exchange O&M costs for hexavalent chromium treatment.
    Plummer S; Gorman C; Henrie T; Shimabuku K; Thompson R; Seidel C
    Water Res; 2018 Aug; 139():420-433. PubMed ID: 29709799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of spent brine from a nitrate exchange process using combined biological denitrification and sulfate precipitation.
    Bae BU; Kim CH; Kim YI
    Water Sci Technol; 2004; 49(5-6):413-9. PubMed ID: 15137452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissimilatory perchlorate reduction: a review.
    Bardiya N; Bae JH
    Microbiol Res; 2011 May; 166(4):237-54. PubMed ID: 21242067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface complexation modeling of the removal of arsenic from ion-exchange waste brines with ferric chloride.
    Pakzadeh B; Batista JR
    J Hazard Mater; 2011 Apr; 188(1-3):399-407. PubMed ID: 21345589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of refractory nano-filtration reject from a tannery using Pd-catalyzed wet air oxidation.
    Tripathi PK; Rao NN; Chauhan C; Pophali GR; Kashyap SM; Lokhande SK; Gan L
    J Hazard Mater; 2013 Oct; 261():63-71. PubMed ID: 23911829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and Mitigation of the Decomposition of an Oxorhenium Complex-Based Heterogeneous Catalyst for Perchlorate Reduction in Water.
    Liu J; Chen X; Wang Y; Strathmann TJ; Werth CJ
    Environ Sci Technol; 2015 Nov; 49(21):12932-40. PubMed ID: 26422179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles.
    An B; Liang Q; Zhao D
    Water Res; 2011 Feb; 45(5):1961-72. PubMed ID: 21288549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced catalytic degradation process of o-nitrochlorobenzene by palladium-catalyzed fe0 particles.
    Xu XH; Zhou HY; Zhou M; Wang DH
    J Environ Sci (China); 2005; 17(5):849-52. PubMed ID: 16313017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of nitrate and perchlorate reduction in ion-exchange brine using the membrane biofilm reactor (MBfR).
    Van Ginkel SW; Ahn CH; Badruzzaman M; Roberts DJ; Lehman SG; Adham SS; Rittmann BE
    Water Res; 2008 Sep; 42(15):4197-205. PubMed ID: 18722637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branched polymeric media: perchlorate-selective resins from hyperbranched polyethyleneimine.
    Chen DP; Yu C; Chang CY; Wan Y; Frechet JM; Goddard WA; Diallo MS
    Environ Sci Technol; 2012 Oct; 46(19):10718-26. PubMed ID: 22950356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.