These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23084746)

  • 41. Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon.
    Goder V; Bieri C; Spiess M
    J Cell Biol; 1999 Oct; 147(2):257-66. PubMed ID: 10525533
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The importance of the membrane interface as the reference state for membrane protein stability.
    Ulmschneider JP; Smith JC; White SH; Ulmschneider MB
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2539-2548. PubMed ID: 30293965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integral membrane protein biosynthesis: why topology is hard to predict.
    Ott CM; Lingappa VR
    J Cell Sci; 2002 May; 115(Pt 10):2003-9. PubMed ID: 11973342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Sec62-Sec63 translocon facilitates translocation of the C-terminus of membrane proteins.
    Jung SJ; Kim JE; Reithinger JH; Kim H
    J Cell Sci; 2014 Oct; 127(Pt 19):4270-8. PubMed ID: 25097231
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reorientation of the first signal-anchor sequence during potassium channel biogenesis at the Sec61 complex.
    Watson HR; Wunderley L; Andreou T; Warwicker J; High S
    Biochem J; 2013 Dec; 456(2):297-309. PubMed ID: 24015703
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion.
    Gogala M; Becker T; Beatrix B; Armache JP; Barrio-Garcia C; Berninghausen O; Beckmann R
    Nature; 2014 Feb; 506(7486):107-10. PubMed ID: 24499919
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimal Hydrophobicity and Reorientation of Amphiphilic Peptides Translocating through Membrane.
    Kabelka I; Vácha R
    Biophys J; 2018 Sep; 115(6):1045-1054. PubMed ID: 30177443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation.
    Kim T; Im W
    Biophys J; 2010 Jul; 99(1):175-83. PubMed ID: 20655845
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex.
    Devaraneni PK; Conti B; Matsumura Y; Yang Z; Johnson AE; Skach WR
    Cell; 2011 Jul; 146(1):134-47. PubMed ID: 21729785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coarse grained molecular dynamics simulations of transmembrane protein-lipid systems.
    Spijker P; van Hoof B; Debertrand M; Markvoort AJ; Vaidehi N; Hilbers PA
    Int J Mol Sci; 2010 Jun; 11(6):2393-420. PubMed ID: 20640160
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly.
    Lu Y; Xiong X; Helm A; Kimani K; Bragin A; Skach WR
    J Biol Chem; 1998 Jan; 273(1):568-76. PubMed ID: 9417117
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Peptide Folding in Translocon-Like Pores.
    Ulmschneider MB; Koehler Leman J; Fennell H; Beckstein O
    J Membr Biol; 2015 Jun; 248(3):407-17. PubMed ID: 26016471
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability.
    Junne T; Schwede T; Goder V; Spiess M
    Mol Biol Cell; 2006 Sep; 17(9):4063-8. PubMed ID: 16822836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The code for directing proteins for translocation across ER membrane: SRP cotranslationally recognizes specific features of a signal sequence.
    Nilsson I; Lara P; Hessa T; Johnson AE; von Heijne G; Karamyshev AL
    J Mol Biol; 2015 Mar; 427(6 Pt A):1191-201. PubMed ID: 24979680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein.
    Harrington HR; Zimmer MH; Chamness LM; Nash V; Penn WD; Miller TF; Mukhopadhyay S; Schlebach JP
    J Biol Chem; 2020 May; 295(20):6798-6808. PubMed ID: 32169904
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integration of transmembrane domains is regulated by their downstream sequences.
    Junne T; Spiess M
    J Cell Sci; 2017 Jan; 130(2):372-381. PubMed ID: 27909247
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequence-specific retention and regulated integration of a nascent membrane protein by the endoplasmic reticulum Sec61 translocon.
    Pitonzo D; Yang Z; Matsumura Y; Johnson AE; Skach WR
    Mol Biol Cell; 2009 Jan; 20(2):685-98. PubMed ID: 19019984
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermodynamics and Kinetics of Aggregation of Flexible Peripheral Membrane Proteins.
    Sadeghi M; Noé F
    J Phys Chem Lett; 2021 Nov; 12(43):10497-10504. PubMed ID: 34677984
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events.
    Conti BJ; Devaraneni PK; Yang Z; David LL; Skach WR
    Mol Cell; 2015 Apr; 58(2):269-83. PubMed ID: 25801167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the energetics of translocon-assisted insertion of charged transmembrane helices into membranes.
    Rychkova A; Vicatos S; Warshel A
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17598-603. PubMed ID: 20876127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.