These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23084824)

  • 41. Empirical observations and mechanistic insights on the first boron-containing chiral selector for LC and supercritical fluid chromatography.
    Wang C; Armstrong DW; Risley DS
    Anal Chem; 2007 Nov; 79(21):8125-35. PubMed ID: 17892273
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring the speed-resolution limits of supercritical fluid chromatography at ultra-high pressures.
    Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K
    J Chromatogr A; 2014 Dec; 1374():247-253. PubMed ID: 25481350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. History of supercritical fluid chromatography: instrumental development.
    Saito M
    J Biosci Bioeng; 2013 Jun; 115(6):590-9. PubMed ID: 23318247
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silica hydride intermediate for octadecylsilica and phenyl bonded phase preparation via heterogeneous hydrosilation in supercritical carbon dioxide.
    Scully NM; Ashu-Arrah BA; Nagle AP; Omamogho JO; O'Sullivan GP; Friebolin V; Dietrich B; Albert K; Glennon JD
    J Chromatogr A; 2011 Apr; 1218(15):1974-82. PubMed ID: 21353227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chiral separation of neonicotinoid insecticides by polysaccharide-type stationary phases using high-performance liquid chromatography and supercritical fluid chromatography.
    Zhang C; Jin L; Zhou S; Zhang Y; Feng S; Zhou Q
    Chirality; 2011 Mar; 23(3):215-21. PubMed ID: 20848644
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chiral separation of selected proline derivatives using a polysaccharide-type stationary phase by supercritical fluid chromatography and comparison with high-performance liquid chromatography.
    Zhao Y; Pritts WA; Zhang S
    J Chromatogr A; 2008 May; 1189(1-2):245-53. PubMed ID: 18054949
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Possibilities and limitations of the kinetic plot method in supercritical fluid chromatography.
    De Pauw R; Desmet G; Broeckhoven K
    J Chromatogr A; 2013 Aug; 1305():300-9. PubMed ID: 23890550
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Supercritical fluid chromatography in pharmaceutical analysis.
    Desfontaine V; Guillarme D; Francotte E; Nováková L
    J Pharm Biomed Anal; 2015 Sep; 113():56-71. PubMed ID: 25818887
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Separation of linear gramicidins using carbon dioxide-containing mobile phases.
    Thurbide KB; Zhang J
    Anal Bioanal Chem; 2005 Jul; 382(5):1227-33. PubMed ID: 15912395
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of isopycnic plots in designing operations of supercritical fluid chromatography. III: reason for the low column efficiency in the critical region.
    Tarafder A; Guiochon G
    J Chromatogr A; 2011 Oct; 1218(40):7189-95. PubMed ID: 21890144
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic performance of a 50mm long 1.8μm chiral column in supercritical fluid chromatography.
    Berger TA
    J Chromatogr A; 2016 Aug; 1459():136-144. PubMed ID: 27423775
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enantioseparation of flurbiprofen on amylose-derived chiral stationary phase by supercritical fluid chromatography.
    Wenda C; Rajendran A
    J Chromatogr A; 2009 Dec; 1216(50):8750-8. PubMed ID: 19286187
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enantioseparation of novel chiral sulfoxides on chlorinated polysaccharide stationary phases in supercritical fluid chromatography.
    West C; Konjaria ML; Shashviashvili N; Lemasson E; Bonnet P; Kakava R; Volonterio A; Chankvetadze B
    J Chromatogr A; 2017 May; 1499():174-182. PubMed ID: 28404372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Minimizing UV noise in supercritical fluid chromatography. I. Improving back pressure regulator pressure noise.
    Berger TA; Berger BK
    J Chromatogr A; 2011 Apr; 1218(16):2320-6. PubMed ID: 21420093
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pressure, temperature and density drops along supercritical fluid chromatography columns. II. Theoretical simulation for neat carbon dioxide and columns packed with 3-μm particles.
    Kaczmarski K; Poe DP; Tarafder A; Guiochon G
    J Chromatogr A; 2012 Aug; 1250():115-23. PubMed ID: 22687711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unravelling the effects of mobile phase additives in supercritical fluid chromatography-Part II: Adsorption on the stationary phase.
    West C; Lemasson E
    J Chromatogr A; 2019 May; 1593():135-146. PubMed ID: 30803789
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Retention mechanisms in super/subcritical fluid chromatography on packed columns.
    Lesellier E
    J Chromatogr A; 2009 Mar; 1216(10):1881-90. PubMed ID: 18996534
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clinical and pharmaceutical applications of packed-column supercritical fluid chromatography.
    Abbott E; Veenstra TD; Issaq HJ
    J Sep Sci; 2008 May; 31(8):1223-30. PubMed ID: 18366028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enrichment of eicosapentaenoic acid and docosahexaenoic acid from sardine by-products by supercritical fluid fractionation.
    Létisse M; Comeau L
    J Sep Sci; 2008 May; 31(8):1374-80. PubMed ID: 18398862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Potential of chiral anion-exchangers operated in various subcritical fluid chromatography modes for resolution of chiral acids.
    Pell R; Lindner W
    J Chromatogr A; 2012 Jul; 1245():175-82. PubMed ID: 22658295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.