These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 23085001)
21. Intracellular toxicity of proline-rich antimicrobial peptides shuttled into mammalian cells by the cell-penetrating peptide penetratin. Hansen A; Schäfer I; Knappe D; Seibel P; Hoffmann R Antimicrob Agents Chemother; 2012 Oct; 56(10):5194-201. PubMed ID: 22850523 [TBL] [Abstract][Full Text] [Related]
22. Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from (13)C, (31)P, and (19)F solid-state NMR. Su Y; Doherty T; Waring AJ; Ruchala P; Hong M Biochemistry; 2009 Jun; 48(21):4587-95. PubMed ID: 19364134 [TBL] [Abstract][Full Text] [Related]
24. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier. Bera S; Kar RK; Mondal S; Pahan K; Bhunia A Biochemistry; 2016 Sep; 55(35):4982-96. PubMed ID: 27532224 [TBL] [Abstract][Full Text] [Related]
25. Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery. Xia H; Gao X; Gu G; Liu Z; Hu Q; Tu Y; Song Q; Yao L; Pang Z; Jiang X; Chen J; Chen H Int J Pharm; 2012 Oct; 436(1-2):840-50. PubMed ID: 22841849 [TBL] [Abstract][Full Text] [Related]
26. Enhancing the Antimicrobial Properties of Peptides through Cell-Penetrating Peptide Conjugation: A Comprehensive Assessment. Kravchenko SV; Domnin PA; Grishin SY; Vershinin NA; Gurina EV; Zakharova AA; Azev VN; Mustaeva LG; Gorbunova EY; Kobyakova MI; Surin AK; Fadeev RS; Ostroumova OS; Ermolaeva SA; Galzitskaya OV Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069046 [TBL] [Abstract][Full Text] [Related]
27. Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR. Lindberg M; Biverståhl H; Gräslund A; Mäler L Eur J Biochem; 2003 Jul; 270(14):3055-63. PubMed ID: 12846839 [TBL] [Abstract][Full Text] [Related]
28. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides. Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448 [TBL] [Abstract][Full Text] [Related]
30. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
31. Early stages of interactions of cell-penetrating peptide penetratin with a DPPC bilayer. Pourmousa M; Karttunen M Chem Phys Lipids; 2013 Apr; 169():85-94. PubMed ID: 23499547 [TBL] [Abstract][Full Text] [Related]
32. Distinct behaviour of the homeodomain derived cell penetrating peptide penetratin in interaction with different phospholipids. Maniti O; Alves I; Trugnan G; Ayala-Sanmartin J PLoS One; 2010 Dec; 5(12):e15819. PubMed ID: 21209890 [TBL] [Abstract][Full Text] [Related]
33. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669 [TBL] [Abstract][Full Text] [Related]
34. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin. Chionis K; Krikorian D; Koukkou AI; Sakarellos-Daitsiotis M; Panou-Pomonis E J Pept Sci; 2016 Nov; 22(11-12):731-736. PubMed ID: 27862650 [TBL] [Abstract][Full Text] [Related]
36. Single Amino Acid Substitutions at Specific Positions of the Heptad Repeat Sequence of Piscidin-1 Yielded Novel Analogs That Show Low Cytotoxicity and In Vitro and In Vivo Antiendotoxin Activity. Kumar A; Tripathi AK; Kathuria M; Shree S; Tripathi JK; Purshottam RK; Ramachandran R; Mitra K; Ghosh JK Antimicrob Agents Chemother; 2016 Jun; 60(6):3687-99. PubMed ID: 27067326 [TBL] [Abstract][Full Text] [Related]
37. Introduction of constrained Trp analogs in RW9 modulates structure and partition in membrane models. Lozada C; Gonzalez S; Agniel R; Hindie M; Manciocchi L; Mazzanti L; Ha-Duong T; Santoro F; Carotenuto A; Ballet S; Lubin-Germain N Bioorg Chem; 2023 Oct; 139():106731. PubMed ID: 37480815 [TBL] [Abstract][Full Text] [Related]
38. Exploration of the Key Factors for Optimizing the in Vivo Oral Delivery of Insulin by Using a Noncovalent Strategy with Cell-Penetrating Peptides. Kamei N; Shigei C; Hasegawa R; Takeda-Morishita M Biol Pharm Bull; 2018; 41(2):239-246. PubMed ID: 29386483 [TBL] [Abstract][Full Text] [Related]
39. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Young Kim H; Young Yum S; Jang G; Ahn DR Sci Rep; 2015 Jun; 5():11719. PubMed ID: 26114640 [TBL] [Abstract][Full Text] [Related]
40. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid. Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]