These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23085161)

  • 1. Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures.
    Palomba D; Vazquez GE; Díaz MF
    J Mol Graph Model; 2012 Sep; 38():137-47. PubMed ID: 23085161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between the glass transition temperatures and repeating unit structure for high molecular weight polymers.
    Cao C; Lin Y
    J Chem Inf Comput Sci; 2003; 43(2):643-50. PubMed ID: 12653533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical supramolecular ordering with biaxial orientation of a combined main-chain/side-chain liquid-crystalline polymer obtained from radical polymerization of 2-vinylterephthalate.
    Xie HL; Jie CK; Yu ZQ; Liu XB; Zhang HL; Shen Z; Chen EQ; Zhou QF
    J Am Chem Soc; 2010 Jun; 132(23):8071-80. PubMed ID: 20491482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks.
    Bertinetto C; Duce C; Micheli A; Solaro R; Starita A; Tiné MR
    J Mol Graph Model; 2009 Apr; 27(7):797-802. PubMed ID: 19150251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-imprinting factor relationship of molecularly imprinted polymers.
    Nantasenamat C; Isarankura-Na-Ayudhya C; Naenna T; Prachayasittikul V
    Biosens Bioelectron; 2007 Jun; 22(12):3309-17. PubMed ID: 17317143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine.
    Pan Y; Jiang J; Wang R; Cao H; Cui Y
    J Hazard Mater; 2009 May; 164(2-3):1242-9. PubMed ID: 18952371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSPR modelling for prediction of glass transition temperature of diverse polymers.
    Khan PM; Roy K
    SAR QSAR Environ Res; 2018 Dec; 29(12):935-956. PubMed ID: 30392386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide.
    Tabaraki R; Khayamian T; Ensafi AA
    J Mol Graph Model; 2006 Sep; 25(1):46-54. PubMed ID: 16337156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using surrogate modeling in the prediction of fibrinogen adsorption onto polymer surfaces.
    Smith JR; Knight D; Kohn J; Rasheed K; Weber N; Kholodovych V; Welsh WJ
    J Chem Inf Comput Sci; 2004; 44(3):1088-97. PubMed ID: 15154777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSPR Analysis of Copolymers by Recursive Neural Networks: Prediction of the Glass Transition Temperature of (Meth)acrylic Random Copolymers.
    Bertinetto CG; Duce C; Micheli A; Solaro R; Tiné MR
    Mol Inform; 2010 Sep; 29(8-9):635-43. PubMed ID: 27463457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular level structures of poly(n-alkyl methacrylate)s with different side chain lengths at the polymer/air and polymer/water interfaces.
    Clarke ML; Chen C; Wang J; Chen Z
    Langmuir; 2006 Oct; 22(21):8800-6. PubMed ID: 17014120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature.
    O'Donnell MD
    Acta Biomater; 2011 May; 7(5):2264-9. PubMed ID: 21256253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and computational prediction of glass transition temperature of drugs.
    Alzghoul A; Alhalaweh A; Mahlin D; Bergström CA
    J Chem Inf Model; 2014 Dec; 54(12):3396-403. PubMed ID: 25361075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.
    Sarangapani R; Reddy ST; Sikder AK
    J Mol Graph Model; 2015 Apr; 57():114-21. PubMed ID: 25700190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of glass transition temperatures from monomer and repeat unit structure using computational neural networks.
    Mattioni BE; Jurs PC
    J Chem Inf Comput Sci; 2002; 42(2):232-40. PubMed ID: 11911692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical study of the gel transition in reversible associating polymers.
    Baljon AR; Flynn D; Krawzsenek D
    J Chem Phys; 2007 Jan; 126(4):044907. PubMed ID: 17286509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices.
    Pan Y; Jiang J; Wang R; Cao H; Zhao J
    J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks.
    D'Archivio AA; Incani A; Ruggieri F
    J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the aqueous solubility of benzylamine salts using QSPR model.
    Tantishaiyakul V
    J Pharm Biomed Anal; 2005 Feb; 37(2):411-5. PubMed ID: 15708687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial glass transition temperature variations in polymer glass: application to a maltodextrin-water system.
    van Sleeuwen RM; Zhang S; Normand V
    Biomacromolecules; 2012 Mar; 13(3):787-97. PubMed ID: 22268547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.