These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 23085306)
1. Precious metals and rare earth elements in municipal solid waste--sources and fate in a Swiss incineration plant. Morf LS; Gloor R; Haag O; Haupt M; Skutan S; Di Lorenzo F; Böni D Waste Manag; 2013 Mar; 33(3):634-44. PubMed ID: 23085306 [TBL] [Abstract][Full Text] [Related]
2. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials. Funari V; Braga R; Bokhari SN; Dinelli E; Meisel T Waste Manag; 2015 Nov; 45():206-16. PubMed ID: 25512234 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal mobility and valuable contents of processed municipal solid waste incineration residues from Southwestern Germany. Abramov S; He J; Wimmer D; Lemloh ML; Muehe EM; Gann B; Roehm E; Kirchhof R; Babechuk MG; Schoenberg R; Thorwarth H; Helle T; Kappler A Waste Manag; 2018 Sep; 79():735-743. PubMed ID: 30343806 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes. Lu X; Nakajima K; Sakanakura H; Matsubae K; Bai H; Nagasaka T Waste Manag; 2012 Jun; 32(6):1148-55. PubMed ID: 22370049 [TBL] [Abstract][Full Text] [Related]
5. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Allegrini E; Maresca A; Olsson ME; Holtze MS; Boldrin A; Astrup TF Waste Manag; 2014 Sep; 34(9):1627-36. PubMed ID: 24889793 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic behavior of rare metals in the melting process of municipal solid waste (MSW) incineration residues. Jung CH; Osako M Chemosphere; 2007 Sep; 69(2):279-88. PubMed ID: 17524456 [TBL] [Abstract][Full Text] [Related]
7. Analysis of heavy metal, rare, precious, and metallic element content in bottom ash from municipal solid waste incineration in Tehran based on particle size. Beikmohammadi M; Yaghmaeian K; Nabizadeh R; Mahvi AH Sci Rep; 2023 Sep; 13(1):16044. PubMed ID: 37749159 [TBL] [Abstract][Full Text] [Related]
8. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling. Long YY; Feng YJ; Cai SS; Ding WX; Shen DS J Hazard Mater; 2013 Oct; 261():427-34. PubMed ID: 23973476 [TBL] [Abstract][Full Text] [Related]
9. X-ray fluorescence sorting of non-ferrous metal fractions from municipal solid waste incineration bottom ash processing depending on particle surface properties. Pfandl K; Küppers B; Scheiber S; Stockinger G; Holzer J; Pomberger R; Antrekowitsch H; Vollprecht D Waste Manag Res; 2020 Feb; 38(2):111-121. PubMed ID: 31621535 [TBL] [Abstract][Full Text] [Related]
10. The environmental performance of enhanced metal recovery from dry municipal solid waste incineration bottom ash. Mehr J; Haupt M; Skutan S; Morf L; Raka Adrianto L; Weibel G; Hellweg S Waste Manag; 2021 Jan; 119():330-341. PubMed ID: 33125941 [TBL] [Abstract][Full Text] [Related]
11. To fractionate municipal solid waste incineration bottom ash: Key for utilisation? Sormunen LA; Rantsi R Waste Manag Res; 2015 Nov; 33(11):995-1004. PubMed ID: 26330401 [TBL] [Abstract][Full Text] [Related]
12. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Jung CH; Matsuto T; Tanaka N; Okada T Waste Manag; 2004; 24(4):381-91. PubMed ID: 15081066 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan. Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804 [TBL] [Abstract][Full Text] [Related]
14. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece. Karagiannidis A; Kontogianni S; Logothetis D Waste Manag; 2013 Feb; 33(2):363-72. PubMed ID: 23206519 [TBL] [Abstract][Full Text] [Related]
15. Controlled combustion tests and bottom ash analysis using household waste with varying composition. Hu Y; Bakker M; Brem G; Chen G Waste Manag; 2011 Feb; 31(2):259-66. PubMed ID: 20675114 [TBL] [Abstract][Full Text] [Related]
16. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme. Tanigaki N; Ishida Y; Osada M Waste Manag; 2015 Mar; 37():137-46. PubMed ID: 25182227 [TBL] [Abstract][Full Text] [Related]
17. Flow analysis of metals in a municipal solid waste management system. Jung CH; Matsuto T; Tanaka N Waste Manag; 2006; 26(12):1337-48. PubMed ID: 16439105 [TBL] [Abstract][Full Text] [Related]
18. Pyrolysis technologies for municipal solid waste: a review. Chen D; Yin L; Wang H; He P Waste Manag; 2014 Dec; 34(12):2466-86. PubMed ID: 25256662 [TBL] [Abstract][Full Text] [Related]
19. Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence. Aouad G; Stille P; Crovisier JL; Geoffroy VA; Meyer JM; Lahd-Geagea M Sci Total Environ; 2006 Nov; 370(2-3):545-51. PubMed ID: 16973205 [TBL] [Abstract][Full Text] [Related]
20. Modelling of material recovery from waste incineration bottom ash. Huber F Waste Manag; 2020 Mar; 105():61-72. PubMed ID: 32028102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]