These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 23085425)

  • 1. Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants.
    Steiner H; Van Waes V
    Prog Neurobiol; 2013 Jan; 100():60-80. PubMed ID: 23085425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits.
    Bisagno V; González B; Urbano FJ
    Pharmacol Res; 2016 Jul; 109():108-18. PubMed ID: 26826399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylphenidate and cocaine: the same effects on gene regulation?
    Yano M; Steiner H
    Trends Pharmacol Sci; 2007 Nov; 28(11):588-96. PubMed ID: 17963850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits.
    Yano M; Steiner H
    Neuroscience; 2005; 132(3):855-65. PubMed ID: 15837145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysregulation of gene induction in corticostriatal circuits after repeated methylphenidate treatment in adolescent rats: differential effects on zif 268 and homer 1a.
    Cotterly L; Beverley JA; Yano M; Steiner H
    Eur J Neurosci; 2007 Jun; 25(12):3617-28. PubMed ID: 17610581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluoxetine potentiates methylphenidate-induced gene regulation in addiction-related brain regions: concerns for use of cognitive enhancers?
    Steiner H; Van Waes V; Marinelli M
    Biol Psychiatry; 2010 Mar; 67(6):592-4. PubMed ID: 19931852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance enhancing, non-prescription use of Ritalin: a comparison with amphetamines and cocaine.
    Svetlov SI; Kobeissy FH; Gold MS
    J Addict Dis; 2007; 26(4):1-6. PubMed ID: 18032226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Psychostimulants and cognition: a continuum of behavioral and cognitive activation.
    Wood S; Sage JR; Shuman T; Anagnostaras SG
    Pharmacol Rev; 2014; 66(1):193-221. PubMed ID: 24344115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice.
    Trinh JV; Nehrenberg DL; Jacobsen JP; Caron MG; Wetsel WC
    Neuroscience; 2003; 118(2):297-310. PubMed ID: 12699766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Involvement of Norepinephrine in Behaviors Related to Psychostimulant Addiction.
    Zaniewska M; Filip M; Przegalinski E
    Curr Neuropharmacol; 2015; 13(3):407-18. PubMed ID: 26411968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paradoxical striatal cellular signaling responses to psychostimulants in hyperactive mice.
    Beaulieu JM; Sotnikova TD; Gainetdinov RR; Caron MG
    J Biol Chem; 2006 Oct; 281(43):32072-80. PubMed ID: 16954211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cocaine and amphetamine-like psychostimulants: neurocircuitry and glutamate neuroplasticity.
    Kalivas PW
    Dialogues Clin Neurosci; 2007; 9(4):389-97. PubMed ID: 18286799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of methylphenidate-induced gene expression in the striatum by local blockade of D1 dopamine receptors: interhemispheric effects.
    Yano M; Beverley JA; Steiner H
    Neuroscience; 2006 Jun; 140(2):699-709. PubMed ID: 16549270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haloperidol attenuates Methylphenidate and Modafinil induced behavioural sensitization and cognitive enhancement.
    Alam N; Choudhary K
    Metab Brain Dis; 2018 Jun; 33(3):893-906. PubMed ID: 29470766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral effects of psychostimulants in mutant mice with cell-type specific deletion of CB2 cannabinoid receptors in dopamine neurons.
    Canseco-Alba A; Schanz N; Sanabria B; Zhao J; Lin Z; Liu QR; Onaivi ES
    Behav Brain Res; 2019 Mar; 360():286-297. PubMed ID: 30508607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pro- and anti-addictive neurotrophic factors and cytokines in psychostimulant addiction: mini review.
    Yamada K; Nabeshima T
    Ann N Y Acad Sci; 2004 Oct; 1025():198-204. PubMed ID: 15542718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The neurobiology of psychostimulant addiction].
    Fernández-Espejo E
    Rev Neurol; 2006 Aug 1-15; 43(3):147-54. PubMed ID: 16871480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of serotonin 5-HT1B receptors in psychostimulant addiction.
    Miszkiel J; Filip M; Przegaliński E
    Pharmacol Rep; 2011; 63(6):1310-5. PubMed ID: 22358079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cocaine- and amphetamine-regulated transcript (CART) peptides modulate the locomotor and motivational properties of psychostimulants.
    Couceyro PR; Evans C; McKinzie A; Mitchell D; Dube M; Hagshenas L; White FJ; Douglass J; Richards WG; Bannon AW
    J Pharmacol Exp Ther; 2005 Dec; 315(3):1091-100. PubMed ID: 16099925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities.
    Faraone SV
    Neurosci Biobehav Rev; 2018 Apr; 87():255-270. PubMed ID: 29428394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.