These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23085533)

  • 1. Noise-free accurate count of microbial colonies by time-lapse shadow image analysis.
    Ogawa H; Nasu S; Takeshige M; Funabashi H; Saito M; Matsuoka H
    J Microbiol Methods; 2012 Dec; 91(3):420-8. PubMed ID: 23085533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and retrievable recording of big data of time-lapse 3D shadow images of microbial colonies.
    Ogawa H; Nasu S; Takeshige M; Saito M; Matsuoka H
    Sci Rep; 2015 May; 5():10061. PubMed ID: 25975590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Enumeration of Aspergillus brasiliensis in Hair Color and Mascara by Time-Lapse Shadow Image Analysis.
    Ogawa H; Matsuoka H; Saito M
    Biocontrol Sci; 2015; 20(4):281-4. PubMed ID: 26726920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise-free microbial colony counting method based on hyperspectral features of agar plates.
    Shi J; Zhang F; Wu S; Guo Z; Huang X; Hu X; Holmes M; Zou X
    Food Chem; 2019 Feb; 274():925-932. PubMed ID: 30373029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated counting of bacterial colonies on agar plates based on images captured at near-infrared light.
    Zhu G; Yan B; Xing M; Tian C
    J Microbiol Methods; 2018 Oct; 153():66-73. PubMed ID: 30195830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Case study on the environmental monitoring for biological manufacturing using Time-lapse Shadow Image Analysis.
    Narutaki S; Lee I; Sugawara Y; Akada K; Kondo A
    Biologicals; 2020 Jul; 66():1-8. PubMed ID: 32660863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated counting of mammalian cell colonies by means of a flat bed scanner and image processing.
    Dahle J; Kakar M; Steen HB; Kaalhus O
    Cytometry A; 2004 Aug; 60(2):182-8. PubMed ID: 15290719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing Bacterial Colony Morphologies Using Time-Lapse Imaging Chamber MOCHA.
    Peñil Cobo M; Libro S; Marechal N; D'Entremont D; Peñil Cobo D; Berkmen M
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29084858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts.
    Augustin JC; Carlier V
    Food Microbiol; 2006 Feb; 23(1):1-38. PubMed ID: 16942983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient microbial colony growth dynamics quantification with ColTapp, an automated image analysis application.
    Bär J; Boumasmoud M; Kouyos RD; Zinkernagel AS; Vulin C
    Sci Rep; 2020 Sep; 10(1):16084. PubMed ID: 32999342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplified method to automatically count bacterial colony forming unit.
    Putman M; Burton R; Nahm MH
    J Immunol Methods; 2005 Jul; 302(1-2):99-102. PubMed ID: 16002082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput imaging of bacterial colonies grown on filter plates with application to serum bactericidal assays.
    Liu X; Wang S; Sendi L; Caulfield MJ
    J Immunol Methods; 2004 Sep; 292(1-2):187-93. PubMed ID: 15350523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Background intensity correction for terabyte-sized time-lapse images.
    Chalfoun J; Majurski M; Bhadriraju K; Lund S; Bajcsy P; Brady M
    J Microsc; 2015 Mar; 257(3):226-37. PubMed ID: 25623496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free 1D microfluidic dipstick counting of microbial colonies and bacteriophage plaques.
    Dönmez Sİ; Needs SH; Osborn HMI; Reis NM; Edwards AD
    Lab Chip; 2022 Jul; 22(15):2820-2831. PubMed ID: 35792607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image processing guided analysis for estimation of bacteria colonies number by means of optical transforms.
    Buzalewicz I; Wysocka-Król K; Podbielska H
    Opt Express; 2010 Jun; 18(12):12992-3005. PubMed ID: 20588428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COVASIAM: an image analysis method that allows detection of confluent microbial colonies and colonies of various sizes for automated counting.
    Corkidi G; Diaz-Uribe R; Folch-Mallol JL; Nieto-Sotelo J
    Appl Environ Microbiol; 1998 Apr; 64(4):1400-4. PubMed ID: 9546177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Computer system for image analysis of fluorescently stained bacteria].
    Drozdov VN; Sergeeva VN; Maksimenko SIu; Zemskaia TI
    Mikrobiologiia; 2006; 75(6):861-4. PubMed ID: 17205813
    [No Abstract]   [Full Text] [Related]  

  • 18. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes.
    Justé A; Thomma BP; Lievens B
    Food Microbiol; 2008 Sep; 25(6):745-61. PubMed ID: 18620966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated counting of bacterial colonies by image analysis.
    Chiang PJ; Tseng MJ; He ZS; Li CH
    J Microbiol Methods; 2015 Jan; 108():74-82. PubMed ID: 25451456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colony size optimisation in colony-based laser imaging for microbial source tracking.
    Gong H; Chen B; Zhang X; Tseng CC
    Int J Comput Biol Drug Des; 2013; 6(3):234-43. PubMed ID: 23900438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.