These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 23085540)
1. Methionine biosynthesis in Agrobacterium tumefaciens: study of the first enzyme. Rotem O; Biran D; Ron EZ Res Microbiol; 2013 Jan; 164(1):12-6. PubMed ID: 23085540 [TBL] [Abstract][Full Text] [Related]
2. Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase. Goudarzi M; Born TL Extremophiles; 2006 Oct; 10(5):469-78. PubMed ID: 16708165 [TBL] [Abstract][Full Text] [Related]
3. A single amino acid change is responsible for evolution of acyltransferase specificity in bacterial methionine biosynthesis. Zubieta C; Arkus KA; Cahoon RE; Jez JM J Biol Chem; 2008 Mar; 283(12):7561-7. PubMed ID: 18216013 [TBL] [Abstract][Full Text] [Related]
4. Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli. Biran D; Brot N; Weissbach H; Ron EZ J Bacteriol; 1995 Mar; 177(5):1374-9. PubMed ID: 7868613 [TBL] [Abstract][Full Text] [Related]
5. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nakahigashi K; Yanagi H; Yura T Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460 [TBL] [Abstract][Full Text] [Related]
6. Regulation of homoserine O-succinyltransferase for efficient production of L-methionine in engineered Escherichia coli. Tang XL; Chen LJ; Du XY; Zhang B; Liu ZQ; Zheng YG J Biotechnol; 2020 Feb; 309():53-58. PubMed ID: 31891734 [TBL] [Abstract][Full Text] [Related]
7. Stabilized homoserine o-succinyltransferases (MetA) or L-methionine partially recovers the growth defect in Escherichia coli lacking ATP-dependent proteases or the DnaK chaperone. Mordukhova EA; Kim D; Pan JG BMC Microbiol; 2013 Jul; 13():179. PubMed ID: 23898868 [TBL] [Abstract][Full Text] [Related]
8. Identification of catalytic cysteine, histidine, and lysine residues in Escherichia coli homoserine transsuccinylase. Ziegler K; Noble SM; Mutumanje E; Bishop B; Huddler DP; Born TL Biochemistry; 2007 Mar; 46(10):2674-83. PubMed ID: 17302437 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the Agrobacterium tumefaciens heat shock response: evidence for a sigma 32-like sigma factor. Mantis NJ; Winans SC J Bacteriol; 1992 Feb; 174(3):991-7. PubMed ID: 1732231 [TBL] [Abstract][Full Text] [Related]
10. Regulatory conservation and divergence of sigma32 homologs from gram-negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens. Nakahigashi K; Yanagi H; Yura T J Bacteriol; 1998 May; 180(9):2402-8. PubMed ID: 9573192 [TBL] [Abstract][Full Text] [Related]
11. [Genetic regulation of the heat-shock response in Escherichia coli]. Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571 [TBL] [Abstract][Full Text] [Related]
12. Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. Balsiger S; Ragaz C; Baron C; Narberhaus F J Bacteriol; 2004 Oct; 186(20):6824-9. PubMed ID: 15466035 [TBL] [Abstract][Full Text] [Related]
13. Improved thermostability and acetic acid tolerance of Escherichia coli via directed evolution of homoserine o-succinyltransferase. Mordukhova EA; Lee HS; Pan JG Appl Environ Microbiol; 2008 Dec; 74(24):7660-8. PubMed ID: 18978085 [TBL] [Abstract][Full Text] [Related]
14. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation. Ueki T; Inouye S J Mol Microbiol Biotechnol; 2001 Apr; 3(2):287-93. PubMed ID: 11321585 [TBL] [Abstract][Full Text] [Related]
15. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. Horikoshi M; Yura T; Tsuchimoto S; Fukumori Y; Kanemori M J Bacteriol; 2004 Nov; 186(22):7474-80. PubMed ID: 15516558 [TBL] [Abstract][Full Text] [Related]
16. Assessing the roles of essential functional groups in the mechanism of homoserine succinyltransferase. Coe DM; Viola RE Arch Biochem Biophys; 2007 May; 461(2):211-8. PubMed ID: 17442255 [TBL] [Abstract][Full Text] [Related]
17. Probing the active site of homoserine trans-succinylase. Rosen R; Becher D; Büttner K; Biran D; Hecker M; Ron EZ FEBS Lett; 2004 Nov; 577(3):386-92. PubMed ID: 15556615 [TBL] [Abstract][Full Text] [Related]
18. Adaptation of Escherichia coli to elevated temperatures: the metA gene product is a heat shock protein. Ron EZ; Alajem S; Biran D; Grossman N Antonie Van Leeuwenhoek; 1990 Oct; 58(3):169-74. PubMed ID: 2256677 [No Abstract] [Full Text] [Related]
19. Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli. Usuda Y; Kurahashi O Appl Environ Microbiol; 2005 Jun; 71(6):3228-34. PubMed ID: 15933025 [TBL] [Abstract][Full Text] [Related]
20. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]