BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23085540)

  • 1. Methionine biosynthesis in Agrobacterium tumefaciens: study of the first enzyme.
    Rotem O; Biran D; Ron EZ
    Res Microbiol; 2013 Jan; 164(1):12-6. PubMed ID: 23085540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase.
    Goudarzi M; Born TL
    Extremophiles; 2006 Oct; 10(5):469-78. PubMed ID: 16708165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single amino acid change is responsible for evolution of acyltransferase specificity in bacterial methionine biosynthesis.
    Zubieta C; Arkus KA; Cahoon RE; Jez JM
    J Biol Chem; 2008 Mar; 283(12):7561-7. PubMed ID: 18216013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli.
    Biran D; Brot N; Weissbach H; Ron EZ
    J Bacteriol; 1995 Mar; 177(5):1374-9. PubMed ID: 7868613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation.
    Nakahigashi K; Yanagi H; Yura T
    Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of homoserine O-succinyltransferase for efficient production of L-methionine in engineered Escherichia coli.
    Tang XL; Chen LJ; Du XY; Zhang B; Liu ZQ; Zheng YG
    J Biotechnol; 2020 Feb; 309():53-58. PubMed ID: 31891734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilized homoserine o-succinyltransferases (MetA) or L-methionine partially recovers the growth defect in Escherichia coli lacking ATP-dependent proteases or the DnaK chaperone.
    Mordukhova EA; Kim D; Pan JG
    BMC Microbiol; 2013 Jul; 13():179. PubMed ID: 23898868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of catalytic cysteine, histidine, and lysine residues in Escherichia coli homoserine transsuccinylase.
    Ziegler K; Noble SM; Mutumanje E; Bishop B; Huddler DP; Born TL
    Biochemistry; 2007 Mar; 46(10):2674-83. PubMed ID: 17302437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Agrobacterium tumefaciens heat shock response: evidence for a sigma 32-like sigma factor.
    Mantis NJ; Winans SC
    J Bacteriol; 1992 Feb; 174(3):991-7. PubMed ID: 1732231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory conservation and divergence of sigma32 homologs from gram-negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens.
    Nakahigashi K; Yanagi H; Yura T
    J Bacteriol; 1998 May; 180(9):2402-8. PubMed ID: 9573192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens.
    Balsiger S; Ragaz C; Baron C; Narberhaus F
    J Bacteriol; 2004 Oct; 186(20):6824-9. PubMed ID: 15466035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved thermostability and acetic acid tolerance of Escherichia coli via directed evolution of homoserine o-succinyltransferase.
    Mordukhova EA; Lee HS; Pan JG
    Appl Environ Microbiol; 2008 Dec; 74(24):7660-8. PubMed ID: 18978085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation.
    Ueki T; Inouye S
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):287-93. PubMed ID: 11321585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity.
    Horikoshi M; Yura T; Tsuchimoto S; Fukumori Y; Kanemori M
    J Bacteriol; 2004 Nov; 186(22):7474-80. PubMed ID: 15516558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the roles of essential functional groups in the mechanism of homoserine succinyltransferase.
    Coe DM; Viola RE
    Arch Biochem Biophys; 2007 May; 461(2):211-8. PubMed ID: 17442255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the active site of homoserine trans-succinylase.
    Rosen R; Becher D; Büttner K; Biran D; Hecker M; Ron EZ
    FEBS Lett; 2004 Nov; 577(3):386-92. PubMed ID: 15556615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of Escherichia coli to elevated temperatures: the metA gene product is a heat shock protein.
    Ron EZ; Alajem S; Biran D; Grossman N
    Antonie Van Leeuwenhoek; 1990 Oct; 58(3):169-74. PubMed ID: 2256677
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli.
    Usuda Y; Kurahashi O
    Appl Environ Microbiol; 2005 Jun; 71(6):3228-34. PubMed ID: 15933025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH.
    Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S
    Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.