BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23085573)

  • 1. Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes.
    Abdul Khaliq R; Kafafy R; Salleh HM; Faris WF
    Nanotechnology; 2012 Nov; 23(45):455106. PubMed ID: 23085573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal transport in functionalized graphene.
    Kim JY; Lee JH; Grossman JC
    ACS Nano; 2012 Oct; 6(10):9050-7. PubMed ID: 22973878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conduction and rectification in few-layer graphene Y junctions.
    Zhang G; Zhang H
    Nanoscale; 2011 Nov; 3(11):4604-7. PubMed ID: 21987096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.
    Mortazavi B; Pötschke M; Cuniberti G
    Nanoscale; 2014 Mar; 6(6):3344-52. PubMed ID: 24518878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement in the efficiency of polymerase chain reaction by TiO2 nanoparticles: crucial role of enhanced thermal conductivity.
    Abdul Khaliq R; Sonawane PJ; Sasi BK; Sahu BS; Pradeep T; Das SK; Mahapatra NR
    Nanotechnology; 2010 Jun; 21(25):255704. PubMed ID: 20516586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain dependence of the heat transport properties of graphene nanoribbons.
    Yeo PS; Loh KP; Gan CK
    Nanotechnology; 2012 Dec; 23(49):495702. PubMed ID: 23149343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous size dependence of the thermal conductivity of graphene ribbons.
    Nika DL; Askerov AS; Balandin AA
    Nano Lett; 2012 Jun; 12(6):3238-44. PubMed ID: 22612247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors.
    Kim BJ; Lee YS; Park SJ
    J Colloid Interface Sci; 2008 Feb; 318(2):530-3. PubMed ID: 18001762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van der Waals interaction-tuned heat transfer in nanostructures.
    Sun T; Wang J; Kang W
    Nanoscale; 2013 Jan; 5(1):128-33. PubMed ID: 23147396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.
    Schwamb T; Burg BR; Schirmer NC; Poulikakos D
    Nanotechnology; 2009 Oct; 20(40):405704. PubMed ID: 19738310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons.
    Yeo JJ; Liu Z; Ng TY
    Nanotechnology; 2012 Sep; 23(38):385702. PubMed ID: 22947664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of atmospheric plasma on physicochemical properties of vapor-grown graphite nanofibers.
    Seo MK; Park SJ; Lee SK
    J Colloid Interface Sci; 2005 May; 285(1):306-13. PubMed ID: 15797427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking.
    Park S; Lee KS; Bozoklu G; Cai W; Nguyen ST; Ruoff RS
    ACS Nano; 2008 Mar; 2(3):572-8. PubMed ID: 19206584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales.
    He Y; Donadio D; Lee JH; Grossman JC; Galli G
    ACS Nano; 2011 Mar; 5(3):1839-44. PubMed ID: 21309558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects.
    Yoonessi M; Shi Y; Scheiman DA; Lebron-Colon M; Tigelaar DM; Weiss RA; Meador MA
    ACS Nano; 2012 Sep; 6(9):7644-55. PubMed ID: 22931435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.
    Pan S; Aksay IA
    ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling.
    Boukhvalov DW; Son YW
    Nanoscale; 2012 Jan; 4(2):417-20. PubMed ID: 22113262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical graphene nanocones over 3D platform of carbon fabrics: a route towards fully foldable graphene based electron source.
    Maiti UN; Maiti S; Das NS; Chattopadhyay KK
    Nanoscale; 2011 Oct; 3(10):4135-41. PubMed ID: 21850356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.
    Khadem MH; Wemhoff AP
    J Chem Phys; 2013 Feb; 138(8):084708. PubMed ID: 23464173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.