These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23085834)

  • 1. Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells.
    Shanmugam M; Durcan CA; Yu B
    Nanoscale; 2012 Dec; 4(23):7399-405. PubMed ID: 23085834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications.
    Shanmugam M; Jacobs-Gedrim R; Song ES; Yu B
    Nanoscale; 2014 Nov; 6(21):12682-9. PubMed ID: 25210837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis.
    Li Q; Walter EC; van der Veer WE; Murray BJ; Newberg JT; Bohannan EW; Switzer JA; Hemminger JC; Penner RM
    J Phys Chem B; 2005 Mar; 109(8):3169-82. PubMed ID: 16851337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally Stable Silver Nanowires-Embedding Metal Oxide for Schottky Junction Solar Cells.
    Kim HS; Patel M; Park HH; Ray A; Jeong C; Kim J
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8662-9. PubMed ID: 26971560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical and Optical Characteristics of Two-Dimensional MoS₂ Film Grown by Metal-Organic Chemical Vapor Deposition.
    Kim D; Jo Y; Jung DH; Lee JS; Kim T
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3563-3567. PubMed ID: 31748052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically transparent thin-film transistors based on 2D multilayer MoS₂ and indium zinc oxide electrodes.
    Kwon J; Hong YK; Kwon HJ; Park YJ; Yoo B; Kim J; Grigoropoulos CP; Oh MS; Kim S
    Nanotechnology; 2015 Jan; 26(3):035202. PubMed ID: 25548952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient light coupling into in-plane semiconductor nanomembrane photonic devices utilizing a sub-wavelength grating coupler.
    Subbaraman H; Xu X; Covey J; Chen RT
    Opt Express; 2012 Aug; 20(18):20659-65. PubMed ID: 23037113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous lattice vibrations of single- and few-layer MoS2.
    Lee C; Yan H; Brus LE; Heinz TF; Hone J; Ryu S
    ACS Nano; 2010 May; 4(5):2695-700. PubMed ID: 20392077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced photon absorption in spiral nanostructured solar cells using layered 2D materials.
    Tahersima MH; Sorger VJ
    Nanotechnology; 2015 Aug; 26(34):344005. PubMed ID: 26235027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient inverted solar cells using TiO(2) nanotube arrays.
    Yu BY; Tsai A; Tsai SP; Wong KT; Yang Y; Chu CW; Shyue JJ
    Nanotechnology; 2008 Jun; 19(25):255202. PubMed ID: 21828647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics.
    Zhang H; Lu SB; Zheng J; Du J; Wen SC; Tang DY; Loh KP
    Opt Express; 2014 Mar; 22(6):7249-60. PubMed ID: 24664073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency Improvement Using Molybdenum Disulphide Interlayers in Single-Wall Carbon Nanotube/Silicon Solar Cells.
    Alzahly S; Yu L; Shearer CJ; Gibson CT; Shapter JG
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29690503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films.
    Seo DJ; Shim JP; Choi SB; Seo TH; Suh EK; Lee DS
    Opt Express; 2012 Nov; 20 Suppl 6():A991-6. PubMed ID: 23187676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films.
    Seo DJ; Shim JP; Choi SB; Seo TH; Suh EK; Lee DS
    Opt Express; 2012 Nov; 20(23):A991-6. PubMed ID: 23326847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the bottlenecks in preparing anodized aluminum oxide (AAO) templates on ITO glass.
    Foong TR; Sellinger A; Hu X
    ACS Nano; 2008 Nov; 2(11):2250-6. PubMed ID: 19206390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized-surface-plasmon-enhanced multifunction silicon nanomembrane Schottky diodes based on Au nanoparticles.
    Ha HJ; Kang BH; Yeom SW; Park J; Lee YH; Ju BK
    Nanotechnology; 2015 Dec; 26(48):485501. PubMed ID: 26541294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Schottky contacts in open-air fabricated heterojunction solar cells to enable high performance and ohmic charge transport.
    Hoye RL; Heffernan S; Ievskaya Y; Sadhanala A; Flewitt A; Friend RH; MacManus-Driscoll JL; Musselman KP
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22192-8. PubMed ID: 25418326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.
    Ye Y; Dai Y; Dai L; Shi Z; Liu N; Wang F; Fu L; Peng R; Wen X; Chen Z; Liu Z; Qin G
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3406-10. PubMed ID: 21058686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Swift Heavy Ion Irradiated Reduced Graphene Oxide (rGO)/Molybdenum Disulfide (MoS₂) Nanocomposite Using Raman Spectroscopy.
    Shakya J; Kasana PK; Mohanty T
    J Nanosci Nanotechnol; 2020 May; 20(5):3174-3181. PubMed ID: 31635662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The electronic and chemical structure of the a-B3CO0.5:Hy-to-metal interface from photoemission spectroscopy: implications for Schottky barrier heights.
    Driver MS; Paquette MM; Karki S; Nordell BJ; Caruso AN
    J Phys Condens Matter; 2012 Nov; 24(44):445001. PubMed ID: 22976833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.