These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 23085839)
1. Deciphering systemic wound responses of the pumpkin extrafascicular phloem by metabolomics and stable isotope-coded protein labeling. Gaupels F; Sarioglu H; Beckmann M; Hause B; Spannagl M; Draper J; Lindermayr C; Durner J Plant Physiol; 2012 Dec; 160(4):2285-99. PubMed ID: 23085839 [TBL] [Abstract][Full Text] [Related]
2. Systemic Induction of NO-, Redox-, and cGMP Signaling in the Pumpkin Extrafascicular Phloem upon Local Leaf Wounding. Gaupels F; Furch AC; Zimmermann MR; Chen F; Kaever V; Buhtz A; Kehr J; Sarioglu H; Kogel KH; Durner J Front Plant Sci; 2016; 7():154. PubMed ID: 26904092 [TBL] [Abstract][Full Text] [Related]
3. Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Zhang B; Tolstikov V; Turnbull C; Hicks LM; Fiehn O Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13532-7. PubMed ID: 20566864 [TBL] [Abstract][Full Text] [Related]
4. So similar yet so different: The distinct contributions of extrafascicular and fascicular phloem to transport and exudation in cucumber plants. Schnieder N; Känel A; Zimmermann M; Kriebs K; Witte A; Wrobel LS; Twyman RM; Prüfer D; Furch ACU; Noll GA J Plant Physiol; 2022 Apr; 271():153643. PubMed ID: 35248933 [TBL] [Abstract][Full Text] [Related]
5. Comparative proteomics of cucurbit phloem indicates both unique and shared sets of proteins. Lopez-Cobollo RM; Filippis I; Bennett MH; Turnbull CG Plant J; 2016 Nov; 88(4):633-647. PubMed ID: 27472661 [TBL] [Abstract][Full Text] [Related]
6. The origin and composition of cucurbit "phloem" exudate. Zhang C; Yu X; Ayre BG; Turgeon R Plant Physiol; 2012 Apr; 158(4):1873-82. PubMed ID: 22331409 [TBL] [Abstract][Full Text] [Related]
7. Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. Fröhlich A; Gaupels F; Sarioglu H; Holzmeister C; Spannagl M; Durner J; Lindermayr C Plant Physiol; 2012 Jul; 159(3):902-14. PubMed ID: 22555880 [TBL] [Abstract][Full Text] [Related]
8. Interaction of xylem and phloem during exudation and wound occlusion in Cucurbita maxima. Zimmermann MR; Hafke JB; van Bel AJ; Furch AC Plant Cell Environ; 2013 Jan; 36(1):237-47. PubMed ID: 22765252 [TBL] [Abstract][Full Text] [Related]
9. Cucurbit extrafascicular phloem has strong negative impacts on aphids and is not a preferred feeding site. Kanvil S; Pham J; Lopez-Cobollo R; Selby M; Bennett M; Beckingham C; Powell G; Turnbull C Plant Cell Environ; 2017 Nov; 40(11):2780-2789. PubMed ID: 28779505 [TBL] [Abstract][Full Text] [Related]
10. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem. Ernst AM; Jekat SB; Zielonka S; Müller B; Neumann U; Rüping B; Twyman RM; Krzyzanek V; Prüfer D; Noll GA Proc Natl Acad Sci U S A; 2012 Jul; 109(28):E1980-9. PubMed ID: 22733783 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of the pumpkin (Cucurbita maxima) 16 kDa phloem protein CmPP16 increases tolerance to water deficit. Ramírez-Ortega FA; Herrera-Pola PS; Toscano-Morales R; Xoconostle-Cázares B; Ruiz-Medrano R Plant Signal Behav; 2014; 9(11):e973823. PubMed ID: 25482781 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Lin MK; Lee YJ; Lough TJ; Phinney BS; Lucas WJ Mol Cell Proteomics; 2009 Feb; 8(2):343-56. PubMed ID: 18936055 [TBL] [Abstract][Full Text] [Related]
13. Pumpkin eIF5A isoforms interact with components of the translational machinery in the cucurbit sieve tube system. Ma Y; Miura E; Ham BK; Cheng HW; Lee YJ; Lucas WJ Plant J; 2010 Nov; 64(3):536-50. PubMed ID: 20807213 [TBL] [Abstract][Full Text] [Related]
14. Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima. Furch AC; Zimmermann MR; Will T; Hafke JB; van Bel AJ J Exp Bot; 2010 Aug; 61(13):3697-708. PubMed ID: 20584788 [TBL] [Abstract][Full Text] [Related]
15. Translocation of structural P proteins in the phloem. Golecki B; Schulz A; Thompson GA Plant Cell; 1999 Jan; 11(1):127-40. PubMed ID: 9878637 [TBL] [Abstract][Full Text] [Related]
16. Proteome study of the phloem sap of pumpkin using multidimensional protein identification technology. Cho WK; Chen XY; Rim Y; Chu H; Kim S; Kim SW; Park ZY; Kim JY J Plant Physiol; 2010 Jul; 167(10):771-8. PubMed ID: 20138393 [TBL] [Abstract][Full Text] [Related]
17. Involvement of SUT1 and SUT2 Sugar Transporters in the Impairment of Sugar Transport and Changes in Phloem Exudate Contents in Phytoplasma-Infected Plants. Marco F; Batailler B; Thorpe MR; Razan F; Le Hir R; Vilaine F; Bouchereau A; Martin-Magniette ML; Eveillard S; Dinant S Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33451049 [TBL] [Abstract][Full Text] [Related]
18. Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space. Hu C; Ham BK; El-Shabrawi HM; Alexander D; Zhang D; Ryals J; Lucas WJ Plant J; 2016 Sep; 87(5):442-54. PubMed ID: 27155400 [TBL] [Abstract][Full Text] [Related]
19. The secret phloem of pumpkins. Turgeon R; Oparka K Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13201-2. PubMed ID: 20643925 [No Abstract] [Full Text] [Related]
20. Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein 1 (PP1), from Cucurbita maxima. Clark AM; Jacobsen KR; Bostwick DE; Dannenhoffer JM; Skaggs MI; Thompson GA Plant J; 1997 Jul; 12(1):49-61. PubMed ID: 9263452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]