BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23085908)

  • 21. Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping.
    Asfour H; Swift L; Sarvazyan N; Doroslovački M; Kay M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():227-30. PubMed ID: 22254291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studying dynamic events in the developing myocardium.
    Vostarek F; Sankova B; Sedmera D
    Prog Biophys Mol Biol; 2014 Aug; 115(2-3):261-9. PubMed ID: 24954141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation.
    Pop M; Sermesant M; Liu G; Relan J; Mansi T; Soong A; Peyrat JM; Truong MV; Fefer P; McVeigh ER; Delingette H; Dick AJ; Ayache N; Wright GA
    Med Image Anal; 2012 Feb; 16(2):505-23. PubMed ID: 22209561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping action potentials and calcium transients simultaneously from the intact heart.
    Laurita KR; Singal A
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2053-60. PubMed ID: 11299206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of two voltage-sensitive dyes and their suitability for long-term imaging of neuronal activity.
    Preuss S; Stein W
    PLoS One; 2013; 8(10):e75678. PubMed ID: 24124505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts.
    Grandy TH; Greenfield SA; Devonshire IM
    J Neurophysiol; 2012 Dec; 108(11):2931-45. PubMed ID: 22972958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of dye affinity in optical measurements of Cai(2+) transients in cardiac muscle.
    Kong W; Fast VG
    Am J Physiol Heart Circ Physiol; 2014 Jul; 307(1):H73-9. PubMed ID: 24791783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Excitation conduction in the rat pulmonary veins myocardium assessed by the optical mapping].
    Kuz'min VS; Rozenshtraukh LV
    Ross Fiziol Zh Im I M Sechenova; 2012 Sep; 98(9):1119-30. PubMed ID: 23293816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes.
    Laughner JI; Ng FS; Sulkin MS; Arthur RM; Efimov IR
    Am J Physiol Heart Circ Physiol; 2012 Oct; 303(7):H753-65. PubMed ID: 22821993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Spectral study of voltage sensitive dye di-4-ANEPPS].
    Xu ZH; Zhang ZX; Wang J; Zhang H; Li Z; Jin YS; Ding HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1359-62. PubMed ID: 17944414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiac response to low-energy field pacing challenges the standard theory of defibrillation.
    Caldwell BJ; Trew ML; Pertsov AM
    Circ Arrhythm Electrophysiol; 2015 Jun; 8(3):685-93. PubMed ID: 25772543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. What can we learn from the optically recorded epicardial action potential?
    Pertsov AM; Zemlin CW; Hyatt CJ; Bernus O
    Biophys J; 2006 Nov; 91(10):3959-60. PubMed ID: 16935958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence imaging of electrical activity in cardiac cells using an all-solid-state system.
    Entcheva E; Kostov Y; Tchernev E; Tung L
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):333-41. PubMed ID: 14765706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of light absorbers to alter optical interrogation with epi-illumination and transillumination in three-dimensional cardiac models.
    Ramshesh VK; Knisley SB
    J Biomed Opt; 2006; 11(2):024019. PubMed ID: 16674209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes?
    Hardy ME; Lawrence CL; Standen NB; Rodrigo GC
    J Pharmacol Toxicol Methods; 2006; 54(2):173-82. PubMed ID: 16632384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recordings from human myenteric neurons using voltage-sensitive dyes.
    Vignali S; Peter N; Ceyhan G; Demir IE; Zeller F; Senseman D; Michel K; Schemann M
    J Neurosci Methods; 2010 Oct; 192(2):240-8. PubMed ID: 20691728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial localization of cardiac optical mapping with multiphoton excitation.
    Ramshesh VK; Knisley SB
    J Biomed Opt; 2003 Apr; 8(2):253-9. PubMed ID: 12683851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of voltage sensitive dye di-4-ANEPPS on guinea pig and rabbit myocardium.
    Novakova M; Bardonova J; Provaznik I; Taborska E; Bochorakova H; Paulova H; Horky D
    Gen Physiol Biophys; 2008 Mar; 27(1):45-54. PubMed ID: 18436983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Di-4-ANEPPS causes photodynamic damage to isolated cardiomyocytes.
    Schaffer P; Ahammer H; Müller W; Koidl B; Windisch H
    Pflugers Arch; 1994 Apr; 426(6):548-51. PubMed ID: 8052525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns.
    Hyatt CJ; Mironov SF; Wellner M; Berenfeld O; Popp AK; Weitz DA; Jalife J; Pertsov AM
    Biophys J; 2003 Oct; 85(4):2673-83. PubMed ID: 14507730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.