These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23085922)

  • 1. Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator.
    Dong J; Bi R; Ho JH; Thong PS; Soo KC; Lee K
    J Biomed Opt; 2012 Sep; 17(9):97004-1. PubMed ID: 23085922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
    Wang Q; Pan M; Zang Z; Li DD
    J Biomed Opt; 2024 Jan; 29(1):015004. PubMed ID: 38283935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement.
    Lin Y; He L; Shang Y; Yu G
    J Biomed Opt; 2012 Jan; 17(1):010502. PubMed ID: 22352631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue.
    Dietsche G; Ninck M; Ortolf C; Li J; Jaillon F; Gisler T
    Appl Opt; 2007 Dec; 46(35):8506-14. PubMed ID: 18071383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties.
    Farzam P; Durduran T
    J Biomed Opt; 2015 May; 20(5):55001. PubMed ID: 25938205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy.
    Dong L; He L; Lin Y; Shang Y; Yu G
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):361-8. PubMed ID: 23193446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light.
    Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Commercial counterboard for 10 ns software correlator for photon and fluorescence correlation spectroscopy.
    Molteni M; Ferri F
    Rev Sci Instrum; 2016 Nov; 87(11):113108. PubMed ID: 27910545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A study on blood flow measurement by diffuse correlation spectroscopy].
    Liang JM; Wang J; Mei JS; Zhang ZX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Oct; 32(10):2749-52. PubMed ID: 23285880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep tissue flowmetry based on diffuse speckle contrast analysis.
    Bi R; Dong J; Lee K
    Opt Lett; 2013 May; 38(9):1401-3. PubMed ID: 23632498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast pulsatile blood flow measurement in deep tissue through a multimode detection fiber.
    Bi R; Du Y; Singh G; Ho CJ; Zhang S; Attia ABE; Li X; Olivo M
    J Biomed Opt; 2020 May; 25(5):1-10. PubMed ID: 32406214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lossless Compressed Sensing of Photon Counts for Fast Diffuse Correlation Spectroscopy.
    Biswas A; Parthasarathy AB
    IEEE Access; 2022; 10():129754-129762. PubMed ID: 36644002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Software manipulations to speed up a real-valued fast Fourier transform algorithm.
    Lütkenhöner B; Ross B
    Comput Methods Programs Biomed; 1989 Jun; 29(2):129-42. PubMed ID: 2743752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy.
    Yu G; Durduran T; Zhou C; Wang HW; Putt ME; Saunders HM; Sehgal CM; Glatstein E; Yodh AG; Busch TM
    Clin Cancer Res; 2005 May; 11(9):3543-52. PubMed ID: 15867258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limitations of the zero crossing detector in the analysis of intracoronary Doppler: a comparison with fast Fourier transform analysis of basal, hyperemic, and transstenotic blood flow velocity measurements in patients with coronary artery disease.
    Di Mario C; Roelandt JR; de Jaegere P; Linker DT; Oomen J; Serruys PW
    Cathet Cardiovasc Diagn; 1993 Jan; 28(1):56-64. PubMed ID: 8416334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast Padé transform for increasing the signal to noise ratio of spectra provided by STEAM pulse sequence.
    Saeedi-Moghadam M; Pouladian M; Faghihi R; Lotfi M
    Technol Health Care; 2019; 27(2):167-172. PubMed ID: 30562913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An autocorrelation-based time domain analysis technique for monitoring perfusion and oxygenation in transplanted organs.
    Subramanian H; Ibey BL; Xu W; Wilson MA; Ericson MN; Coté GL
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1355-8. PubMed ID: 16042002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scalable correlator for multichannel diffuse correlation spectroscopy.
    Stapels CJ; Kolodziejski NJ; McAdams D; Podolsky MJ; Fernandez DE; Farkas D; Christian JF
    Proc SPIE Int Soc Opt Eng; 2016 Feb; 9698():. PubMed ID: 29129951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncontact 3-D Speckle Contrast Diffuse Correlation Tomography of Tissue Blood Flow Distribution.
    Huang C; Irwin D; Zhao M; Shang Y; Agochukwu N; Wong L; Yu G
    IEEE Trans Med Imaging; 2017 Oct; 36(10):2068-2076. PubMed ID: 28574345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast blood flow monitoring in deep tissues with real-time software correlators.
    Wang D; Parthasarathy AB; Baker WB; Gannon K; Kavuri V; Ko T; Schenkel S; Li Z; Li Z; Mullen MT; Detre JA; Yodh AG
    Biomed Opt Express; 2016 Mar; 7(3):776-97. PubMed ID: 27231588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.