BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23085984)

  • 1. In vivo spatial frequency domain spectroscopy of two layer media.
    Yudovsky D; Nguyen JQ; Durkin AJ
    J Biomed Opt; 2012 Oct; 17(10):107006. PubMed ID: 23085984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial frequency domain spectroscopy of two layer media.
    Yudovsky D; Durkin AJ
    J Biomed Opt; 2011 Oct; 16(10):107005. PubMed ID: 22029367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy.
    Saager RB; Cuccia DJ; Durkin AJ
    J Biomed Opt; 2010; 15(1):017012. PubMed ID: 20210486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance.
    Yudovsky D; Pilon L
    Appl Opt; 2010 Apr; 49(10):1707-19. PubMed ID: 20357850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the confounding effect of pigmentation on measured skin tissue optical properties: a comparison of colorimetry with spatial frequency domain imaging.
    Phan T; Rowland R; Ponticorvo A; Le BC; Sharif SA; Kennedy GT; Wilson RH; Durkin AJ
    J Biomed Opt; 2022 Mar; 27(3):. PubMed ID: 35324096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images.
    Nishidate I; Aizu Y; Mishina H
    Opt Lett; 2005 Aug; 30(16):2128-30. PubMed ID: 16127932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing a novel device based on a new technology for non-invasive measurement of blood biomarkers irrespective of skin color.
    Gokhale SG; Daggubati VS; Alexandrakis G
    Ger Med Sci; 2023; 21():Doc09. PubMed ID: 37426887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-volume frequency-domain oximetry: phantom experiments and first in vivo results.
    Willmann S; Terenji A; Osterholz J; Meister J; Hering P; Schwarzmaier HJ
    J Biomed Opt; 2003 Oct; 8(4):618-28. PubMed ID: 14563199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrieving skin properties from in vivo spectral reflectance measurements.
    Yudovsky D; Pilon L
    J Biophotonics; 2011 May; 4(5):305-14. PubMed ID: 20680977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy.
    Vasefi F; MacKinnon N; Saager R; Kelly KM; Maly T; Booth N; Durkin AJ; Farkas DL
    J Biomed Opt; 2016 Nov; 21(11):114001. PubMed ID: 27830262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation.
    Finlay JC; Foster TH
    Med Phys; 2004 Jul; 31(7):1949-59. PubMed ID: 15305445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation.
    Nishidate I; Aizu Y; Mishina H
    J Biomed Opt; 2004; 9(4):700-10. PubMed ID: 15250756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of layered tissue optical properties from spatial frequency-domain spectroscopy and a deterministic radiative transport solver.
    Horan ST; Gardner AR; Saager R; Durkin AJ; Venugopalan V
    J Biomed Opt; 2018 Nov; 24(7):1-11. PubMed ID: 30456934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin.
    Bosschaart N; Faber DJ; van Leeuwen TG; Aalders MC
    J Biomed Opt; 2011 Oct; 16(10):100504. PubMed ID: 22029343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sampling depth of a diffuse reflectance spectroscopy probe for in-vivo physiological quantification of murine subcutaneous tumor allografts.
    Greening G; Mundo A; Rajaram N; Muldoon TJ
    J Biomed Opt; 2018 Aug; 23(8):1-14. PubMed ID: 30152204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption and reduced scattering coefficients in epidermis and dermis from a Swedish cohort study.
    Jonasson H; Fredriksson I; Bergstrand S; Östgren CJ; Larsson M; Strömberg T
    J Biomed Opt; 2023 Nov; 28(11):115001. PubMed ID: 38078153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments.
    Zhong X; Wen X; Zhu D
    Opt Express; 2014 Jan; 22(2):1852-64. PubMed ID: 24515194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.
    Kim H; Hau NT; Chae YG; Lee BI; Kang HW
    Lasers Surg Med; 2016 Apr; 48(4):392-9. PubMed ID: 26749358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy.
    Hennessy R; Lim SL; Markey MK; Tunnell JW
    J Biomed Opt; 2013 Mar; 18(3):037003. PubMed ID: 23455965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.