BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23086269)

  • 21. Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.).
    Wu LB; Ueda Y; Lai SK; Frei M
    Plant Cell Environ; 2017 Apr; 40(4):570-584. PubMed ID: 26991510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA-seq reveals the downregulated proteins related to photosynthesis in growth-inhibited rice seedlings induced by low-energy N+ beam implantation.
    Chen QF; Ya HY; Wang WD; Jiao Z
    Genet Mol Res; 2014 Mar; 13(3):7029-36. PubMed ID: 24737518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery.
    Lakra N; Nutan KK; Das P; Anwar K; Singla-Pareek SL; Pareek A
    J Plant Physiol; 2015 Mar; 176():36-46. PubMed ID: 25543954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide expression analysis of a rice mutant line under salt stress.
    Lee KJ; Kwon SJ; Hwang JE; Han SM; Jung I; Kim JB; Choi HI; Ryu J; Kang SY
    Genet Mol Res; 2016 Oct; 15(4):. PubMed ID: 27813582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice.
    Ning J; Li X; Hicks LM; Xiong L
    Plant Physiol; 2010 Feb; 152(2):876-90. PubMed ID: 20007444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The imprints of the high light and UV-B stresses in Oryza sativa L. 'Kanchana' seedlings are differentially modulated.
    Faseela P; Puthur JT
    J Photochem Photobiol B; 2018 Jan; 178():551-559. PubMed ID: 29253814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms.
    Robertson KL; Mostaghim A; Cuomo CA; Soto CM; Lebedev N; Bailey RF; Wang Z
    PLoS One; 2012; 7(11):e48674. PubMed ID: 23139812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling.
    Luo P; Shen Y; Jin S; Huang S; Cheng X; Wang Z; Li P; Zhao J; Bao M; Ning G
    Plant Sci; 2016 Apr; 245():35-49. PubMed ID: 26940490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves.
    Ueda Y; Uehara N; Sasaki H; Kobayashi K; Yamakawa T
    Plant Physiol Biochem; 2013 Sep; 70():396-402. PubMed ID: 23831949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromium stress response effect on signal transduction and expression of signaling genes in rice.
    Trinh NN; Huang TL; Chi WC; Fu SF; Chen CC; Huang HJ
    Physiol Plant; 2014 Feb; 150(2):205-24. PubMed ID: 24033343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique.
    Xu H; Gao Y; Wang J
    PLoS One; 2012; 7(2):e30646. PubMed ID: 22347394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Senescence-specific change in ROS scavenging enzyme activities and regulation of various SOD isozymes to ROS levels in psf mutant rice leaves.
    Wang F; Liu J; Zhou L; Pan G; Li Z; Zaidi SH; Cheng F
    Plant Physiol Biochem; 2016 Dec; 109():248-261. PubMed ID: 27756006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress.
    Sun L; Di D; Li G; Kronzucker HJ; Shi W
    J Plant Physiol; 2017 May; 212():94-104. PubMed ID: 28282528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses.
    Lee SH; Ahsan N; Lee KW; Kim DH; Lee DG; Kwak SS; Kwon SY; Kim TH; Lee BH
    J Plant Physiol; 2007 Dec; 164(12):1626-38. PubMed ID: 17360071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome analysis of rice root responses to potassium deficiency.
    Ma TL; Wu WH; Wang Y
    BMC Plant Biol; 2012 Sep; 12():161. PubMed ID: 22963580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.).
    Ke S; Liu XJ; Luan X; Yang W; Zhu H; Liu G; Zhang G; Wang S
    Gene; 2018 Oct; 675():285-300. PubMed ID: 29969697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice.
    Han M; Kim CY; Lee J; Lee SK; Jeon JS
    Mol Cells; 2014 Jul; 37(7):532-9. PubMed ID: 25081037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial transcriptomes of iron-deficient and cadmium-stressed rice.
    Ogo Y; Kakei Y; Itai RN; Kobayashi T; Nakanishi H; Takahashi H; Nakazono M; Nishizawa NK
    New Phytol; 2014 Feb; 201(3):781-794. PubMed ID: 24188410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different expression of miRNAs targeting helicases in rice in response to low and high dose rate γ-ray treatments.
    Macovei A; Tuteja N
    Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23733055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transgenic expression of dual positional maize lipoxygenase-1 leads to the regulation of defense-related signaling molecules and activation of the antioxidative enzyme system in rice.
    Cho K; Kim YC; Woo JC; Rakwal R; Agrawal GK; Yoeun S; Han O
    Plant Sci; 2012 Apr; 185-186():238-45. PubMed ID: 22325886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.