These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 23086336)

  • 1. Divergence of visual channels in the inner retina.
    Asari H; Meister M
    Nat Neurosci; 2012 Nov; 15(11):1581-9. PubMed ID: 23086336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking the computational structure of variance adaptation to biophysical mechanisms.
    Ozuysal Y; Baccus SA
    Neuron; 2012 Mar; 73(5):1002-15. PubMed ID: 22405209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Does the Inner Retinal Network Shape the Ganglion Cells Receptive Field? A Computational Study.
    Kartsaki E; Hilgen G; Sernagor E; Cessac B
    Neural Comput; 2024 May; 36(6):1041-1083. PubMed ID: 38669693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells.
    Dumitrescu ON; Pucci FG; Wong KY; Berson DM
    J Comp Neurol; 2009 Nov; 517(2):226-44. PubMed ID: 19731338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.
    Murphy-Baum BL; Taylor WR
    J Neurosci; 2015 Sep; 35(39):13336-50. PubMed ID: 26424882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark-adapted response threshold of OFF ganglion cells is not set by OFF bipolar cells in the mouse retina.
    Arman AC; Sampath AP
    J Neurophysiol; 2012 May; 107(10):2649-59. PubMed ID: 22338022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amacrine cell contributions to red-green color opponency in central primate retina: a model study.
    Lebedev DS; Marshak DW
    Vis Neurosci; 2007; 24(4):535-47. PubMed ID: 17900377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The projective field of retinal bipolar cells and its modulation by visual context.
    Asari H; Meister M
    Neuron; 2014 Feb; 81(3):641-52. PubMed ID: 24507195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-talk between ON and OFF channels in the salamander retina: indirect bipolar cell inputs to ON-OFF ganglion cells.
    Pang JJ; Gao F; Wu SM
    Vision Res; 2007 Feb; 47(3):384-92. PubMed ID: 17092534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli.
    Schreyer HM; Gollisch T
    Neuron; 2021 May; 109(10):1692-1706.e8. PubMed ID: 33798407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amacrine and bipolar inputs to midget and parasol ganglion cells in marmoset retina.
    Abbott CJ; Percival KA; Martin PR; Grünert U
    Vis Neurosci; 2012 May; 29(3):157-68. PubMed ID: 22564345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatial structure of a nonlinear receptive field.
    Schwartz GW; Okawa H; Dunn FA; Morgan JL; Kerschensteiner D; Wong RO; Rieke F
    Nat Neurosci; 2012 Nov; 15(11):1572-80. PubMed ID: 23001060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell type-specific bipolar cell input to ganglion cells in the mouse retina.
    Neumann S; Hüser L; Ondreka K; Auler N; Haverkamp S
    Neuroscience; 2016 Mar; 316():420-32. PubMed ID: 26751712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina.
    Field GD; Greschner M; Gauthier JL; Rangel C; Shlens J; Sher A; Marshak DW; Litke AM; Chichilnisky EJ
    Nat Neurosci; 2009 Sep; 12(9):1159-64. PubMed ID: 19668201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal representation of the elementary visual signal.
    Li PH; Field GD; Greschner M; Ahn D; Gunning DE; Mathieson K; Sher A; Litke AM; Chichilnisky EJ
    Neuron; 2014 Jan; 81(1):130-9. PubMed ID: 24411737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells.
    Famiglietti EV
    Vis Neurosci; 2002; 19(2):145-62. PubMed ID: 12385627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A retinal circuit that computes object motion.
    Baccus SA; Olveczky BP; Manu M; Meister M
    J Neurosci; 2008 Jul; 28(27):6807-17. PubMed ID: 18596156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Viral and Electrophysiological Approaches for Elucidating the Structure and Function of Retinal Circuits].
    Onda M; Sansawa K; Osakada F
    Yakugaku Zasshi; 2018; 138(5):669-678. PubMed ID: 29710012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial properties and functional organization of small bistratified ganglion cells in primate retina.
    Field GD; Sher A; Gauthier JL; Greschner M; Shlens J; Litke AM; Chichilnisky EJ
    J Neurosci; 2007 Nov; 27(48):13261-72. PubMed ID: 18045920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergence and Divergence of CRH Amacrine Cells in Mouse Retinal Circuitry.
    Park SJH; Pottackal J; Ke JB; Jun NY; Rahmani P; Kim IJ; Singer JH; Demb JB
    J Neurosci; 2018 Apr; 38(15):3753-3766. PubMed ID: 29572434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.