These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Neria-González I; Wang ET; Ramírez F; Romero JM; Hernández-Rodríguez C Anaerobe; 2006 Jun; 12(3):122-33. PubMed ID: 16765858 [TBL] [Abstract][Full Text] [Related]
3. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Leloup J; Fossing H; Kohls K; Holmkvist L; Borowski C; Jørgensen BB Environ Microbiol; 2009 May; 11(5):1278-91. PubMed ID: 19220398 [TBL] [Abstract][Full Text] [Related]
4. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
5. Increased bioclogging and corrosion risk by sulfate addition during iodine recovery at a natural gas production plant. Lim CP; Zhao D; Takase Y; Miyanaga K; Watanabe T; Tomoe Y; Tanji Y Appl Microbiol Biotechnol; 2011 Feb; 89(3):825-34. PubMed ID: 20922384 [TBL] [Abstract][Full Text] [Related]
6. Coexistence of sulfate reducers with the other oil bacterial groups in Diyarbakır oil fields. Tüccar T; Ilhan-Sungur E; Abbas B; Muyzer G Anaerobe; 2019 Oct; 59():19-31. PubMed ID: 31029749 [TBL] [Abstract][Full Text] [Related]
7. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925 [TBL] [Abstract][Full Text] [Related]
8. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel. Ilhan-Sungur E; Ozuolmez D; Çotuk A; Cansever N; Muyzer G Anaerobe; 2017 Feb; 43():27-34. PubMed ID: 27871998 [TBL] [Abstract][Full Text] [Related]
9. Identification of key factors in Accelerated Low Water Corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota. Marty F; Gueuné H; Malard E; Sánchez-Amaya JM; Sjögren L; Abbas B; Quillet L; van Loosdrecht MC; Muyzer G Biofouling; 2014; 30(3):281-97. PubMed ID: 24456308 [TBL] [Abstract][Full Text] [Related]
10. Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico. López MA; Zavala-Díaz de la Serna FJ; Jan-Roblero J; Romero JM; Hernández-Rodríguez C FEMS Microbiol Ecol; 2006 Oct; 58(1):145-54. PubMed ID: 16958915 [TBL] [Abstract][Full Text] [Related]
11. Diverse bacterial groups are associated with corrosive lesions at a Granite Mountain Record Vault (GMRV). Kan J; Chellamuthu P; Obraztsova A; Moore JE; Nealson KH J Appl Microbiol; 2011 Aug; 111(2):329-37. PubMed ID: 21599813 [TBL] [Abstract][Full Text] [Related]
12. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. Scheid D; Stubner S; Conrad R FEMS Microbiol Ecol; 2004 Nov; 50(2):101-10. PubMed ID: 19712368 [TBL] [Abstract][Full Text] [Related]
13. Impact of sulphate-reducing bacteria on the performance of engineering materials. Javaherdashti R Appl Microbiol Biotechnol; 2011 Sep; 91(6):1507-17. PubMed ID: 21786108 [TBL] [Abstract][Full Text] [Related]
14. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Santoro AE; Casciotti KL; Francis CA Environ Microbiol; 2010 Jul; 12(7):1989-2006. PubMed ID: 20345944 [TBL] [Abstract][Full Text] [Related]
15. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
16. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. Bermont-Bouis D; Janvier M; Grimont PA; Dupont I; Vallaeys T J Appl Microbiol; 2007 Jan; 102(1):161-8. PubMed ID: 17184331 [TBL] [Abstract][Full Text] [Related]
17. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water. Zuo R; Ornek D; Syrett BC; Green RM; Hsu CH; Mansfeld FB; Wood TK Appl Microbiol Biotechnol; 2004 Apr; 64(2):275-83. PubMed ID: 12898064 [TBL] [Abstract][Full Text] [Related]
18. [Microorganisms in heat supply lines and internal corrosion of steel pipes]. Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246 [TBL] [Abstract][Full Text] [Related]
19. Microbial community of sulfate-reducing up-flow sludge bed in the SANI® process for saline sewage treatment. Wang J; Shi M; Lu H; Wu D; Shao MF; Zhang T; Ekama GA; van Loosdrecht MC; Chen GH Appl Microbiol Biotechnol; 2011 Jun; 90(6):2015-25. PubMed ID: 21494868 [TBL] [Abstract][Full Text] [Related]
20. Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. Kaksonen AH; Plumb JJ; Franzmann PD; Puhakka JA FEMS Microbiol Ecol; 2004 Mar; 47(3):279-89. PubMed ID: 19712316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]