BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23086424)

  • 1. Acoustic experience alters the aged auditory system.
    Turner JG; Parrish JL; Zuiderveld L; Darr S; Hughes LF; Caspary DM; Idrezbegovic E; Canlon B
    Ear Hear; 2013; 34(2):151-9. PubMed ID: 23086424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of exposure to an augmented acoustic environment on auditory function in mice: roles of hearing loss and age during treatment.
    Willott JF; Turner JG; Sundin VS
    Hear Res; 2000 Apr; 142(1-2):79-88. PubMed ID: 10748331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of exposing C57BL/6J mice to high- and low-frequency augmented acoustic environments: auditory brainstem response thresholds, cytocochleograms, anterior cochlear nucleus morphology and the role of gonadal hormones.
    Willott JF; VandenBosche J; Shimizu T; Ding DL; Salvi R
    Hear Res; 2008 Jan; 235(1-2):60-71. PubMed ID: 18077117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice.
    Turner JG; Willott JF
    Hear Res; 1998 Apr; 118(1-2):101-13. PubMed ID: 9606065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ameliorative effects of exposing DBA/2J mice to an augmented acoustic environment on histological changes in the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bross LS; McFadden S
    J Assoc Res Otolaryngol; 2005 Sep; 6(3):234-43. PubMed ID: 15983726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sex, gonadal hormones, and augmented acoustic environments on sensorineural hearing loss and the central auditory system: insights from research on C57BL/6J mice.
    Willott JF
    Hear Res; 2009 Jun; 252(1-2):89-99. PubMed ID: 19114100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of exposing gonadectomized and intact C57BL/6J mice to a high-frequency augmented acoustic environment: Auditory brainstem response thresholds and cytocochleograms.
    Willott JF; VandenBosche J; Shimizu T; Ding DL; Salvi R
    Hear Res; 2006 Nov; 221(1-2):73-81. PubMed ID: 16973316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergence of noise vulnerability in cochleae of young CBA/J and CBA/CaJ mice.
    Ohlemiller KK; Rybak Rice ME; Rellinger EA; Ortmann AJ
    Hear Res; 2011 Feb; 272(1-2):13-20. PubMed ID: 21108998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice.
    Kane KL; Longo-Guess CM; Gagnon LH; Ding D; Salvi RJ; Johnson KR
    Hear Res; 2012 Jan; 283(1-2):80-8. PubMed ID: 22138310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent effects of early augmented acoustic environment on the auditory brainstem.
    Oliver DL; Izquierdo MA; Malmierca MS
    Neuroscience; 2011 Jun; 184():75-87. PubMed ID: 21496479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking anatomical and physiological markers of auditory system degeneration with behavioral hearing assessments in a mouse (Mus musculus) model of age-related hearing loss.
    Kobrina A; Schrode KM; Screven LA; Javaid H; Weinberg MM; Brown G; Board R; Villavisanis DF; Dent ML; Lauer AM
    Neurobiol Aging; 2020 Dec; 96():87-103. PubMed ID: 32950782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of exposing DBA/2J mice to a high-frequency augmented acoustic environment on the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bosch JV; Shimizu T; Ding DL
    Hear Res; 2006; 216-217():138-45. PubMed ID: 16497456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ameliorative effects of an augmented acoustic environment on age-related hearing loss in middle-aged Fischer 344/NHsd rats.
    Tanaka C; Bielefeld EC; Chen GD; Li M; Henderson D
    Laryngoscope; 2009 Jul; 119(7):1374-9. PubMed ID: 19418535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic exposure.
    Abbott SD; Hughes LF; Bauer CA; Salvi R; Caspary DM
    Neuroscience; 1999; 93(4):1375-81. PubMed ID: 10501462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma.
    Milbrandt JC; Holder TM; Wilson MC; Salvi RJ; Caspary DM
    Hear Res; 2000 Sep; 147(1-2):251-60. PubMed ID: 10962189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing.
    Parthasarathy A; Kujawa SG
    J Neurosci; 2018 Aug; 38(32):7108-7119. PubMed ID: 29976623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of noise- or styrene-induced cochlear damages on glutamate decarboxylase levels in the rat inferior colliculus.
    Pouyatos B; Morel G; Lambert-Xolin AM; Maguin K; Campo P
    Hear Res; 2004 Mar; 189(1-2):83-91. PubMed ID: 14987755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related hearing loss: aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain.
    Christensen N; D'Souza M; Zhu X; Frisina RD
    Brain Res; 2009 Feb; 1253():27-34. PubMed ID: 19070604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-Ergothioneine slows the progression of age-related hearing loss in CBA/CaJ mice.
    Bauer MA; Bazard P; Acosta AA; Bangalore N; Elessaway L; Thivierge M; Chellani M; Zhu X; Ding B; Walton JP; Frisina RD
    Hear Res; 2024 May; 446():109004. PubMed ID: 38608332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of noise on inferior colliculus evoked potentials and cochlear anatomy in young and aged chinchillas.
    McFadden SL; Campo P; Ding D; Quaranta N
    Hear Res; 1998 Mar; 117(1-2):81-96. PubMed ID: 9557979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.