These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 23086437)
1. Direct deposition of gold nanoplates and porous platinum on substrates through solvent-free chemical reduction of metal precursors with ethylene glycol vapor. Cho SJ; Mei X; Ouyang J Phys Chem Chem Phys; 2012 Dec; 14(45):15793-801. PubMed ID: 23086437 [TBL] [Abstract][Full Text] [Related]
2. Facile synthesis of gold octahedra by direct reduction of HAuCl4 in an aqueous solution. Li W; Xia Y Chem Asian J; 2010 Jun; 5(6):1312-6. PubMed ID: 20376878 [TBL] [Abstract][Full Text] [Related]
3. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Li L; Wang Z; Huang T; Xie J; Qi L Langmuir; 2010 Jul; 26(14):12330-5. PubMed ID: 20503996 [TBL] [Abstract][Full Text] [Related]
4. Formation of Au-Pt bimetallic nanoparticles in a two-layer SiO2 films doped with Au and Pt, respectively, through interlayer diffusion. Pal S; De G Phys Chem Chem Phys; 2008 Jul; 10(27):4062-6. PubMed ID: 18597021 [TBL] [Abstract][Full Text] [Related]
5. Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction. Liu X; Xu H; Xia H; Wang D Langmuir; 2012 Sep; 28(38):13720-6. PubMed ID: 22954316 [TBL] [Abstract][Full Text] [Related]
6. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Tseng CW; Chang HY; Chang JY; Huang CC Nanoscale; 2012 Nov; 4(21):6823-30. PubMed ID: 23011048 [TBL] [Abstract][Full Text] [Related]
7. Molecular mechanism of the photochemical generation of gold nanoparticles in ethylene glycol: support for the disproportionation mechanism. Eustis S; El-Sayed MA J Phys Chem B; 2006 Jul; 110(29):14014-9. PubMed ID: 16854091 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions. Xie S; Jin M; Tao J; Wang Y; Xie Z; Zhu Y; Xia Y Chemistry; 2012 Nov; 18(47):14974-80. PubMed ID: 23108763 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical oxygen reduction behavior of selectively deposited platinum atoms on gold nanoparticles. Sarkar A; Kerr JB; Cairns EJ Chemphyschem; 2013 Jul; 14(10):2132-42. PubMed ID: 23505224 [TBL] [Abstract][Full Text] [Related]
10. Formation of Au-Pt alloy nanoparticles on a Si substrate by simple dip-coating at room temperature. Zhao L; Heinig N; Leung KT Langmuir; 2013 Jan; 29(3):927-31. PubMed ID: 23234580 [TBL] [Abstract][Full Text] [Related]
11. Surprisingly strong effect of stabilizer on the properties of Au nanoparticles and Pt^Au nanostructures in electrocatalysis. Zhang GR; Xu BQ Nanoscale; 2010 Dec; 2(12):2798-804. PubMed ID: 20938521 [TBL] [Abstract][Full Text] [Related]
12. A 3D monolithic CNT block structure as a reductant, support and scavenger for nanoscopic gold, platinum and zinc oxide. Khanderi J; Hoffmann RC; Schneider JJ Nanoscale; 2010 Apr; 2(4):613-22. PubMed ID: 20644767 [TBL] [Abstract][Full Text] [Related]
13. Cooperative effect of Au and Pt inside TiO2 matrix for optical hydrogen detection at room temperature using surface plasmon spectroscopy. Della Gaspera E; Bersani M; Mattei G; Nguyen TL; Mulvaney P; Martucci A Nanoscale; 2012 Sep; 4(19):5972-9. PubMed ID: 22907103 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of highly active and stable Au-PtCu core-shell nanoparticles for oxygen reduction reaction. Hsu C; Huang C; Hao Y; Liu F Phys Chem Chem Phys; 2012 Nov; 14(42):14696-701. PubMed ID: 23032948 [TBL] [Abstract][Full Text] [Related]
15. Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. Zheng B; Kong T; Jing X; Odoom-Wubah T; Li X; Sun D; Lu F; Zheng Y; Huang J; Li Q J Colloid Interface Sci; 2013 Apr; 396():138-45. PubMed ID: 23403109 [TBL] [Abstract][Full Text] [Related]
16. Rational synthesis of heterostructured nanoparticles with morphology control. Wang C; Tian W; Ding Y; Ma YQ; Wang ZL; Markovic NM; Stamenkovic VR; Daimon H; Sun S J Am Chem Soc; 2010 May; 132(18):6524-9. PubMed ID: 20397665 [TBL] [Abstract][Full Text] [Related]
17. Facile preparation of SERS-active nanostructured Au spheres by simple reduction of AuCl4- ions with EDOT. Hong JY; Huh S J Colloid Interface Sci; 2014 Mar; 418():360-5. PubMed ID: 24461856 [TBL] [Abstract][Full Text] [Related]
18. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions. Pandey PA; Bell GR; Rourke JP; Sanchez AM; Elkin MD; Hickey BJ; Wilson NR Small; 2011 Nov; 7(22):3202-10. PubMed ID: 21953833 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical responses and electrocatalysis at single au nanoparticles. Li Y; Cox JT; Zhang B J Am Chem Soc; 2010 Mar; 132(9):3047-54. PubMed ID: 20148588 [TBL] [Abstract][Full Text] [Related]
20. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. Suntivich J; Xu Z; Carlton CE; Kim J; Han B; Lee SW; Bonnet N; Marzari N; Allard LF; Gasteiger HA; Hamad-Schifferli K; Shao-Horn Y J Am Chem Soc; 2013 May; 135(21):7985-91. PubMed ID: 23646922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]