These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 23086456)
1. Ab-initio study of anisotropic and chemical surface modifications of β-SiC nanowires. Trejo A; Cuevas JL; Salazar F; Carvajal E; Cruz-Irisson M J Mol Model; 2013 May; 19(5):2043-8. PubMed ID: 23086456 [TBL] [Abstract][Full Text] [Related]
2. A theoretical study of surface lithium effects on the [111] SiC nanowires as anode materials. Tang X; Yan W; Gao T; Wang J; Liu Y; Qin X J Mol Model; 2024 Jul; 30(8):251. PubMed ID: 38967703 [TBL] [Abstract][Full Text] [Related]
3. The effects of oxygen on the surface passivation of InP nanowires. Dionízio Moreira M; Venezuela P; Schmidt TM Nanotechnology; 2008 Feb; 19(6):065203. PubMed ID: 21730696 [TBL] [Abstract][Full Text] [Related]
4. A theoretical study of electronic and optical properties of SiC nanowires and their quantum confinement effects. Laref A; Alshammari N; Laref S; Luo SJ Dalton Trans; 2014 Apr; 43(14):5505-15. PubMed ID: 24535574 [TBL] [Abstract][Full Text] [Related]
5. Computational simulation of the effects of oxygen on the electronic states of hydrogenated 3C-porous SiC. Trejo A; Calvino M; Ramos E; Cruz-Irisson M Nanoscale Res Lett; 2012 Aug; 7(1):471. PubMed ID: 22913486 [TBL] [Abstract][Full Text] [Related]
6. Orientation- and passivation-dependent stability and electronic properties of α-Si3N4 nanobelts. Xiong L; Dai J; Zhong B; Wen G; Song Y Phys Chem Chem Phys; 2014 Nov; 16(44):24266-74. PubMed ID: 25297683 [TBL] [Abstract][Full Text] [Related]
7. DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center. Solano JR; Baños AT; Durán ÁM; Quiroz EC; Irisson MC J Mol Model; 2017 Sep; 23(10):292. PubMed ID: 28952031 [TBL] [Abstract][Full Text] [Related]
8. Anisotropic and passivation-dependent quantum confinement effects in germanium nanowires: a comparison with silicon nanowires. Jing M; Ni M; Song W; Lu J; Gao Z; Lai L; Mei WN; Yu D; Ye H; Wang L J Phys Chem B; 2006 Sep; 110(37):18332-7. PubMed ID: 16970454 [TBL] [Abstract][Full Text] [Related]
9. Tight-binding quantum chemical molecular dynamics simulations for the elucidation of chemical reaction dynamics in SiC etching with SF6/O2 plasma. Ito H; Kuwahara T; Kawaguchi K; Higuchi Y; Ozawa N; Kubo M Phys Chem Chem Phys; 2016 Mar; 18(11):7808-19. PubMed ID: 26911539 [TBL] [Abstract][Full Text] [Related]
10. What a difference a bond makes: the structural, chemical, and physical properties of methyl-terminated Si(111) surfaces. Wong KT; Lewis NS Acc Chem Res; 2014 Oct; 47(10):3037-44. PubMed ID: 25192516 [TBL] [Abstract][Full Text] [Related]
11. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations. Monastyrskii LS; Boyko YV; Sokolovskii BS; Potashnyk VY Nanoscale Res Lett; 2016 Dec; 11(1):25. PubMed ID: 26768147 [TBL] [Abstract][Full Text] [Related]
12. Surface dangling-bond States and band lineups in hydrogen-terminated Si, Ge, and Ge/si nanowires. Kagimura R; Nunes RW; Chacham H Phys Rev Lett; 2007 Jan; 98(2):026801. PubMed ID: 17358629 [TBL] [Abstract][Full Text] [Related]
13. Stability, electronic structure, and optical property of surface passivated silicon nanowires: density functional calculation. Chen R; Wang L; Lai L; Lu J; Luo G; Zhou J; Gao Z J Nanosci Nanotechnol; 2009 Mar; 9(3):1754-9. PubMed ID: 19435036 [TBL] [Abstract][Full Text] [Related]
15. Ab Initio Study of Octane Moiety Adsorption on H- and Cl-Functionalized Silicon Nanowires. Ferrucci B; Buonocore F; Giusepponi S; Shalabny A; Bashouti MY; Celino M Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564298 [TBL] [Abstract][Full Text] [Related]
16. Passivation of Mid-Gap Electronic States at Calcium Aluminosilicate Glass Surfaces upon Water Exposure: An Antony AC; Goyal S; Park H; Banerjee J; Smith NJ; Agnello G; Manley RG J Phys Chem B; 2022 Oct; 126(39):7709-7719. PubMed ID: 36149757 [TBL] [Abstract][Full Text] [Related]
17. Interstitial sodium and lithium doping effects on the electronic and mechanical properties of silicon nanowires: a DFT study. Salazar F; Trejo-Baños A; Miranda A; Pérez LA; Cruz-Irisson M J Mol Model; 2019 Nov; 25(11):338. PubMed ID: 31705205 [TBL] [Abstract][Full Text] [Related]
18. First-Principles Study of the Band Gap Structure of Oxygen-Passivated Silicon Nanonets. Lin L; Li D; Feng J Nanoscale Res Lett; 2009 Feb; 4(5):409-413. PubMed ID: 20596312 [TBL] [Abstract][Full Text] [Related]
19. A hybrid density functional study of zigzag SiC nanotubes. Alam KM; Ray AK Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487 [TBL] [Abstract][Full Text] [Related]
20. Computational modeling of the size effects on the optical vibrational modes of H-terminated Ge nanostructures. Trejo A; Cruz-Irisson M Molecules; 2013 Apr; 18(4):4776-85. PubMed ID: 23609626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]