BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 23086512)

  • 1. Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding.
    Yang H; Tao Y; Zheng Z; Shao D; Li Z; Sweetingham MW; Buirchell BJ; Li C
    Theor Appl Genet; 2013 Feb; 126(2):511-22. PubMed ID: 23086512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.
    Yang H; Tao Y; Zheng Z; Li C; Sweetingham MW; Howieson JG
    BMC Genomics; 2012 Jul; 13():318. PubMed ID: 22805587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of whole genome re-sequencing data in the development of diagnostic DNA markers tightly linked to a disease-resistance locus for marker-assisted selection in lupin (Lupinus angustifolius).
    Yang H; Jian J; Li X; Renshaw D; Clements J; Sweetingham MW; Tan C; Li C
    BMC Genomics; 2015 Sep; 16(1):660. PubMed ID: 26329386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding.
    You M; Boersma JG; Buirchell BJ; Sweetingham MW; Siddique KH; Yang H
    Cell Mol Biol Lett; 2005; 10(1):123-34. PubMed ID: 15809684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of Diaporthe toxica resistance markers in European Lupinus angustifolius germplasm and identification of novel resistance donors for marker-assisted selection.
    Książkiewicz M; Wójcik K; Irzykowski W; Bielski W; Rychel S; Kaczmarek J; Plewiński P; Rudy E; Jędryczka M
    J Appl Genet; 2020 Feb; 61(1):1-12. PubMed ID: 31641945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and mapping of LanrBo: a locus conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.).
    Fischer K; Dieterich R; Nelson MN; Kamphuis LG; Singh KB; Rotter B; Krezdorn N; Winter P; Wehling P; Ruge-Wehling B
    Theor Appl Genet; 2015 Oct; 128(10):2121-30. PubMed ID: 26169875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L.
    Yang H; Tao Y; Zheng Z; Zhang Q; Zhou G; Sweetingham MW; Howieson JG; Li C
    PLoS One; 2013; 8(5):e64799. PubMed ID: 23734219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of PCR-based markers and whole-genome selection model for anthracnose resistance in white lupin (Lupinus albus L.).
    Rychel-Bielska S; Nazzicari N; Plewiński P; Bielski W; Annicchiarico P; Książkiewicz M
    J Appl Genet; 2020 Dec; 61(4):531-545. PubMed ID: 32968972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin ( Lupinus angustifolius L.).
    Yang H; Shankar M; Buirchell J; Sweetingham W; Caminero C; Smith C
    Theor Appl Genet; 2002 Aug; 105(2-3):265-270. PubMed ID: 12582528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide SNP discovery for development of high-density genetic map and QTL mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.).
    Deokar A; Sagi M; Tar'an B
    Theor Appl Genet; 2019 Jun; 132(6):1861-1872. PubMed ID: 30879097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Resistance of Narrow-Leafed Lupin to
    Książkiewicz M; Rychel-Bielska S; Plewiński P; Nuc M; Irzykowski W; Jędryczka M; Krajewski P
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33430123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach.
    Iquira E; Humira S; François B
    BMC Plant Biol; 2015 Jan; 15():5. PubMed ID: 25595526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut.
    Dodia SM; Joshi B; Gangurde SS; Thirumalaisamy PP; Mishra GP; Narandrakumar D; Soni P; Rathnakumar AL; Dobaria JR; Sangh C; Chitikineni A; Chanda SV; Pandey MK; Varshney RK; Thankappan R
    Theor Appl Genet; 2019 Apr; 132(4):1001-1016. PubMed ID: 30539317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Mapping and Validation of SrND643: A New Wheat Gene for Resistance to the Stem Rust Pathogen Ug99 Race Group.
    Basnet BR; Singh S; Lopez-Vera EE; Huerta-Espino J; Bhavani S; Jin Y; Rouse MN; Singh RP
    Phytopathology; 2015 Apr; 105(4):470-6. PubMed ID: 25870921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Dissection of Phomopsis Stem Canker Resistance in Cultivated Sunflower Using High Density SNP Linkage Map.
    Talukder ZI; Underwood W; Ma G; Seiler GJ; Misar CG; Cai X; Qi L
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid identification of candidate genes for resistance to tomato late blight disease using next-generation sequencing technologies.
    Arafa RA; Rakha MT; Soliman NEK; Moussa OM; Kamel SM; Shirasawa K
    PLoS One; 2017; 12(12):e0189951. PubMed ID: 29253902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic mapping of the powdery mildew resistance gene in soybean PI 567301B.
    Jun TH; Mian MA; Kang ST; Michel AP
    Theor Appl Genet; 2012 Oct; 125(6):1159-68. PubMed ID: 22692446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of SNP markers linked to purple blotch resistance for marker-assisted selection in onion (
    Sahoo J; Mahanty B; Mishra R; Joshi RK
    3 Biotech; 2023 May; 13(5):137. PubMed ID: 37124987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa.
    Neelam K; Mahajan R; Gupta V; Bhatia D; Gill BK; Komal R; Lore JS; Mangat GS; Singh K
    Theor Appl Genet; 2020 Mar; 133(3):689-705. PubMed ID: 31811315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew.
    Sun S; Deng D; Wang Z; Duan C; Wu X; Wang X; Zong X; Zhu Z
    Theor Appl Genet; 2016 May; 129(5):909-19. PubMed ID: 26801335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.