BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 23086713)

  • 1. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.
    Markin CJ; Spyracopoulos L
    J Biomol NMR; 2012 Dec; 54(4):355-76. PubMed ID: 23086713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased precision for analysis of protein-ligand dissociation constants determined from chemical shift titrations.
    Markin CJ; Spyracopoulos L
    J Biomol NMR; 2012 Jun; 53(2):125-38. PubMed ID: 22534787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems.
    Krishnamoorthy J; Yu VC; Mok YK
    PLoS One; 2010 Feb; 5(2):e8943. PubMed ID: 20174626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding mechanism of an SH3 domain studied by NMR and ITC.
    Demers JP; Mittermaier A
    J Am Chem Soc; 2009 Apr; 131(12):4355-67. PubMed ID: 19267471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase.
    Shinya S; Ghinet MG; Brzezinski R; Furuita K; Kojima C; Shah S; Kovrigin EL; Fukamizo T
    J Biomol NMR; 2017 Apr; 67(4):309-319. PubMed ID: 28393280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer.
    Latham MP; Zimmermann GR; Pardi A
    J Am Chem Soc; 2009 Apr; 131(14):5052-3. PubMed ID: 19317486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic footprinting titrations for estimating ligand-binding constants and detecting pathways of conformational switching of calmodulin.
    Shea MA; Sorensen BR; Pedigo S; Verhoeven AS
    Methods Enzymol; 2000; 323():254-301. PubMed ID: 10944756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.
    Angulo J; Enríquez-Navas PM; Nieto PM
    Chemistry; 2010 Jul; 16(26):7803-12. PubMed ID: 20496354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trimethylsilyl tag for probing protein-ligand interactions by NMR.
    Becker W; Adams LA; Graham B; Wagner GE; Zangger K; Otting G; Nitsche C
    J Biomol NMR; 2018 Apr; 70(4):211-218. PubMed ID: 29564580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using chemical shift perturbation to characterise ligand binding.
    Williamson MP
    Prog Nucl Magn Reson Spectrosc; 2013 Aug; 73():1-16. PubMed ID: 23962882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR line shapes and multi-state binding equilibria.
    Kovrigin EL
    J Biomol NMR; 2012 Jul; 53(3):257-70. PubMed ID: 22610542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the uncertainty in exchange parameters determined from off-resonance R1ρ relaxation dispersion for systems in fast exchange.
    Bothe JR; Stein ZW; Al-Hashimi HM
    J Magn Reson; 2014 Jul; 244():18-29. PubMed ID: 24819426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of the inter-ligand overhauser effect: a new approach for mapping structural relationships of macromolecular ligands.
    London RE
    J Magn Reson; 1999 Dec; 141(2):301-11. PubMed ID: 10579953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of NMR and ITC for the Study of the Kinetics of Carbohydrate Binding by AMPK β-Subunit Carbohydrate-Binding Modules.
    Gooley PR; Koay A; Mobbs JI
    Methods Mol Biol; 2018; 1732():87-98. PubMed ID: 29480470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO and O2 binding to pseudo-tetradentate ligand-copper(I) complexes with a variable N-donor moiety: kinetic/thermodynamic investigation reveals ligand-induced changes in reaction mechanism.
    Lucas HR; Meyer GJ; Karlin KD
    J Am Chem Soc; 2010 Sep; 132(37):12927-40. PubMed ID: 20726586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated evaluation of chemical shift perturbation spectra: New approaches to quantitative analysis of receptor-ligand interaction NMR spectra.
    Peng C; Unger SW; Filipp FV; Sattler M; Szalma S
    J Biomol NMR; 2004 Aug; 29(4):491-504. PubMed ID: 15243180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the signs of 1H(alpha) chemical shift differences between ground and excited protein states by off-resonance spin-lock R(1rho) NMR spectroscopy.
    Auer R; Neudecker P; Muhandiram DR; Lundström P; Hansen DF; Konrat R; Kay LE
    J Am Chem Soc; 2009 Aug; 131(31):10832-3. PubMed ID: 19606858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of Probing Protein-Ligand Interactions Using NMR.
    Aguirre C; Cala O; Krimm I
    Curr Protoc Protein Sci; 2015 Aug; 81():17.18.1-17.18.24. PubMed ID: 26237672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.