BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23086758)

  • 1. Interleukin-27 expression modifies prostate cancer cell crosstalk with bone and immune cells in vitro.
    Zolochevska O; Diaz-Quiñones AO; Ellis J; Figueiredo ML
    J Cell Physiol; 2013 May; 228(5):1127-36. PubMed ID: 23086758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p65-Dependent production of interleukin-1β by osteolytic prostate cancer cells causes an induction of chemokine expression in osteoblasts.
    Schulze J; Weber K; Baranowsky A; Streichert T; Lange T; Spiro AS; Albers J; Seitz S; Zustin J; Amling M; Fehse B; Schinke T
    Cancer Lett; 2012 Apr; 317(1):106-13. PubMed ID: 22108531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lack of epithelial interleukin-7 and BAFF/BLyS gene expression in prostate cancer as a possible mechanism of tumor escape from immunosurveillance.
    Di Carlo E; D'Antuono T; Pompa P; Giuliani R; Rosini S; Stuppia L; Musiani P; Sorrentino C
    Clin Cancer Res; 2009 May; 15(9):2979-87. PubMed ID: 19366834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype.
    Loberg RD; Logothetis CJ; Keller ET; Pienta KJ
    J Clin Oncol; 2005 Nov; 23(32):8232-41. PubMed ID: 16278478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DU145 human prostate cancer cells express functional receptor activator of NFkappaB: new insights in the prostate cancer bone metastasis process.
    Mori K; Le Goff B; Charrier C; Battaglia S; Heymann D; Rédini F
    Bone; 2007 Apr; 40(4):981-90. PubMed ID: 17196895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer.
    Zerbini LF; Wang Y; Cho JY; Libermann TA
    Cancer Res; 2003 May; 63(9):2206-15. PubMed ID: 12727841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prostate cancer bone metastases promote both osteolytic and osteoblastic activity.
    Keller ET; Brown J
    J Cell Biochem; 2004 Mar; 91(4):718-29. PubMed ID: 14991763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogenesis of osteoblastic bone metastases from prostate cancer.
    Ibrahim T; Flamini E; Mercatali L; Sacanna E; Serra P; Amadori D
    Cancer; 2010 Mar; 116(6):1406-18. PubMed ID: 20108337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features.
    Liu Q; Russell MR; Shahriari K; Jernigan DL; Lioni MI; Garcia FU; Fatatis A
    Cancer Res; 2013 Jun; 73(11):3297-305. PubMed ID: 23536554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression.
    Lee SO; Chun JY; Nadiminty N; Lou W; Gao AC
    Prostate; 2007 May; 67(7):764-73. PubMed ID: 17373716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment.
    Reichert JC; Quent VM; Burke LJ; Stansfield SH; Clements JA; Hutmacher DW
    Biomaterials; 2010 Nov; 31(31):7928-36. PubMed ID: 20688384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment.
    Chung LW; Baseman A; Assikis V; Zhau HE
    J Urol; 2005 Jan; 173(1):10-20. PubMed ID: 15592017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate.
    Steiner GE; Newman ME; Paikl D; Stix U; Memaran-Dagda N; Lee C; Marberger MJ
    Prostate; 2003 Aug; 56(3):171-82. PubMed ID: 12772186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoprotegerin in prostate cancer bone metastasis.
    Corey E; Brown LG; Kiefer JA; Quinn JE; Pitts TE; Blair JM; Vessella RL
    Cancer Res; 2005 Mar; 65(5):1710-8. PubMed ID: 15753366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts.
    Fizazi K; Yang J; Peleg S; Sikes CR; Kreimann EL; Daliani D; Olive M; Raymond KA; Janus TJ; Logothetis CJ; Karsenty G; Navone NM
    Clin Cancer Res; 2003 Jul; 9(7):2587-97. PubMed ID: 12855635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis.
    Bonfil RD; Chinni S; Fridman R; Kim HR; Cher ML
    Urol Oncol; 2007; 25(5):407-11. PubMed ID: 17826661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism.
    Schulze J; Albers J; Baranowsky A; Keller J; Spiro A; Streichert T; Zustin J; Amling M; Schinke T
    Bone; 2010 Feb; 46(2):524-33. PubMed ID: 19796718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic potential of curcumin in prostate cancer--V: Interference with the osteomimetic properties of hormone refractory C4-2B prostate cancer cells.
    Dorai T; Dutcher JP; Dempster DW; Wiernik PH
    Prostate; 2004 Jun; 60(1):1-17. PubMed ID: 15129424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes.
    Armstrong AP; Miller RE; Jones JC; Zhang J; Keller ET; Dougall WC
    Prostate; 2008 Jan; 68(1):92-104. PubMed ID: 18008334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo.
    Li BH; Xu SB; Li F; Zou XG; Saimaiti A; Simayi D; Wang YH; Zhang Y; Yuan J; Zhang WJ
    Cell Signal; 2012 Mar; 24(3):718-25. PubMed ID: 22108090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.