These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 23086899)
1. Comment on real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte- based ReRAM. Valov I; Waser R Adv Mater; 2013 Jan; 25(2):162-4. PubMed ID: 23086899 [TBL] [Abstract][Full Text] [Related]
2. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Liu Q; Sun J; Lv H; Long S; Yin K; Wan N; Li Y; Sun L; Liu M Adv Mater; 2012 Apr; 24(14):1844-9. PubMed ID: 22407902 [TBL] [Abstract][Full Text] [Related]
3. Response to "comment on real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM". Liu Q; Jun S; Lv H; Long S; Li L; Yin K; Wan N; Li Y; Sun L; Liu M Adv Mater; 2013 Jan; 25(2):165-7. PubMed ID: 23086910 [No Abstract] [Full Text] [Related]
4. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. Liu Q; Long S; Lv H; Wang W; Niu J; Huo Z; Chen J; Liu M ACS Nano; 2010 Oct; 4(10):6162-8. PubMed ID: 20853865 [TBL] [Abstract][Full Text] [Related]
5. Graphene-Modified Interface Controls Transition from VCM to ECM Switching Modes in Ta/TaOx Based Memristive Devices. Lübben M; Karakolis P; Ioannou-Sougleridis V; Normand P; Dimitrakis P; Valov I Adv Mater; 2015 Oct; 27(40):6202-7. PubMed ID: 26456484 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical metallization switching with a platinum group metal in different oxides. Wang Z; Jiang H; Hyung Jang M; Lin P; Ribbe A; Xia Q; Yang JJ Nanoscale; 2016 Aug; 8(29):14023-30. PubMed ID: 27166623 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical metallization cell with anion supplying active electrode. Zhang Z; Wang Y; Luo Y; He Y; Ma M; Yang R; Li H Sci Rep; 2018 Aug; 8(1):12617. PubMed ID: 30135453 [TBL] [Abstract][Full Text] [Related]
8. Spectroelectrochemical investigation of an electrogenerated graphitic oxide solid-electrolyte interphase. Walker EK; Vanden Bout DA; Stevenson KJ Anal Chem; 2012 Oct; 84(19):8190-7. PubMed ID: 22963466 [TBL] [Abstract][Full Text] [Related]
9. Bipolar switching polarity reversal by electrolyte layer sequence in electrochemical metallization cells with dual-layer solid electrolytes. Soni R; Meuffels P; Petraru A; Hansen M; Ziegler M; Vavra O; Kohlstedt H; Jeong DS Nanoscale; 2013 Dec; 5(24):12598-606. PubMed ID: 24177268 [TBL] [Abstract][Full Text] [Related]
10. Observation of conductance quantization in oxide-based resistive switching memory. Zhu X; Su W; Liu Y; Hu B; Pan L; Lu W; Zhang J; Li RW Adv Mater; 2012 Aug; 24(29):3941-6. PubMed ID: 22707001 [TBL] [Abstract][Full Text] [Related]
11. Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness. Meister P; Qi X; Kloepsch R; Krämer E; Streipert B; Winter M; Placke T ChemSusChem; 2017 Feb; 10(4):804-814. PubMed ID: 28127874 [TBL] [Abstract][Full Text] [Related]
12. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode. Kim JH; Nam KH; Hwang I; Cho WJ; Park B; Chung HB J Nanosci Nanotechnol; 2014 Dec; 14(12):9498-503. PubMed ID: 25971090 [TBL] [Abstract][Full Text] [Related]
13. Detection of the insulating gap and conductive filament growth direction in resistive memories. Yalon E; Karpov I; Karpov V; Riess I; Kalaev D; Ritter D Nanoscale; 2015 Oct; 7(37):15434-41. PubMed ID: 26335720 [TBL] [Abstract][Full Text] [Related]
14. Addressable Direct-Write Nanoscale Filament Formation and Dissolution by Nanoparticle-Mediated Bipolar Electrochemistry. Crouch GM; Han D; Fullerton-Shirey SK; Go DB; Bohn PW ACS Nano; 2017 May; 11(5):4976-4984. PubMed ID: 28459548 [TBL] [Abstract][Full Text] [Related]
15. Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories. Younis A; Chu D; Shah AH; Du H; Li S ACS Appl Mater Interfaces; 2017 Jan; 9(2):1585-1592. PubMed ID: 27958711 [TBL] [Abstract][Full Text] [Related]
16. Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces. Shrestha BR; Baimpos T; Raman S; Valtiner M ACS Nano; 2014 Jun; 8(6):5979-87. PubMed ID: 24826945 [TBL] [Abstract][Full Text] [Related]
17. SET kinetics of electrochemical metallization cells: influence of counter-electrodes in SiO Lübben M; Menzel S; Park SG; Yang M; Waser R; Valov I Nanotechnology; 2017 Mar; 28(13):135205. PubMed ID: 28248653 [TBL] [Abstract][Full Text] [Related]
18. Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems. Wedig A; Luebben M; Cho DY; Moors M; Skaja K; Rana V; Hasegawa T; Adepalli KK; Yildiz B; Waser R; Valov I Nat Nanotechnol; 2016 Jan; 11(1):67-74. PubMed ID: 26414197 [TBL] [Abstract][Full Text] [Related]
19. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes. Seley D; Ayers K; Parkinson BA ACS Comb Sci; 2013 Feb; 15(2):82-9. PubMed ID: 23298465 [TBL] [Abstract][Full Text] [Related]
20. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor. Rusi ; Chan PY; Majid SR PLoS One; 2015; 10(7):e0129780. PubMed ID: 26158447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]