These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 23086910)
1. Response to "comment on real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM". Liu Q; Jun S; Lv H; Long S; Li L; Yin K; Wan N; Li Y; Sun L; Liu M Adv Mater; 2013 Jan; 25(2):165-7. PubMed ID: 23086910 [No Abstract] [Full Text] [Related]
2. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Liu Q; Sun J; Lv H; Long S; Yin K; Wan N; Li Y; Sun L; Liu M Adv Mater; 2012 Apr; 24(14):1844-9. PubMed ID: 22407902 [TBL] [Abstract][Full Text] [Related]
3. Comment on real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte- based ReRAM. Valov I; Waser R Adv Mater; 2013 Jan; 25(2):162-4. PubMed ID: 23086899 [TBL] [Abstract][Full Text] [Related]
4. Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness. Meister P; Qi X; Kloepsch R; Krämer E; Streipert B; Winter M; Placke T ChemSusChem; 2017 Feb; 10(4):804-814. PubMed ID: 28127874 [TBL] [Abstract][Full Text] [Related]
5. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. Liu Q; Long S; Lv H; Wang W; Niu J; Huo Z; Chen J; Liu M ACS Nano; 2010 Oct; 4(10):6162-8. PubMed ID: 20853865 [TBL] [Abstract][Full Text] [Related]
6. Observation of conductance quantization in oxide-based resistive switching memory. Zhu X; Su W; Liu Y; Hu B; Pan L; Lu W; Zhang J; Li RW Adv Mater; 2012 Aug; 24(29):3941-6. PubMed ID: 22707001 [TBL] [Abstract][Full Text] [Related]
7. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics. Wan CJ; Zhu LQ; Zhou JM; Shi Y; Wan Q Nanoscale; 2014 May; 6(9):4491-7. PubMed ID: 24643320 [TBL] [Abstract][Full Text] [Related]
8. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Solarska R; Jurczakowski R; Augustynski J Nanoscale; 2012 Mar; 4(5):1553-6. PubMed ID: 22290176 [TBL] [Abstract][Full Text] [Related]
9. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases. Klingan K; Ringleb F; Zaharieva I; Heidkamp J; Chernev P; Gonzalez-Flores D; Risch M; Fischer A; Dau H ChemSusChem; 2014 May; 7(5):1301-10. PubMed ID: 24449514 [TBL] [Abstract][Full Text] [Related]
10. Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD). Oh EO; Whang CM; Lee YR; Park SY; Prasad DH; Yoon KJ; Son JW; Lee JH; Lee HW Adv Mater; 2012 Jul; 24(25):3373-7. PubMed ID: 22648864 [TBL] [Abstract][Full Text] [Related]
11. Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes. Fabbri E; Bi L; Pergolesi D; Traversa E Adv Mater; 2012 Jan; 24(2):195-208. PubMed ID: 21953861 [TBL] [Abstract][Full Text] [Related]
12. Controlling the assembly of graphene oxide by an electrolyte-assisted approach. Song Y; Yang H; Wang Y; Chen S; Li D; Zhang S; Zhang X Nanoscale; 2013 Jul; 5(14):6458-63. PubMed ID: 23744059 [TBL] [Abstract][Full Text] [Related]
13. Spectroelectrochemical investigation of an electrogenerated graphitic oxide solid-electrolyte interphase. Walker EK; Vanden Bout DA; Stevenson KJ Anal Chem; 2012 Oct; 84(19):8190-7. PubMed ID: 22963466 [TBL] [Abstract][Full Text] [Related]
14. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes. Seley D; Ayers K; Parkinson BA ACS Comb Sci; 2013 Feb; 15(2):82-9. PubMed ID: 23298465 [TBL] [Abstract][Full Text] [Related]
16. Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells. Xu F; Mu S J Nanosci Nanotechnol; 2014 Feb; 14(2):1169-80. PubMed ID: 24749420 [TBL] [Abstract][Full Text] [Related]
17. Influence of Mn Zhang C; Duan N; Jiang L; Xu F; Luo J Environ Sci Pollut Res Int; 2018 Apr; 25(12):11958-11969. PubMed ID: 29450773 [TBL] [Abstract][Full Text] [Related]
18. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Malavasi L; Fisher CA; Islam MS Chem Soc Rev; 2010 Nov; 39(11):4370-87. PubMed ID: 20848015 [TBL] [Abstract][Full Text] [Related]
19. Influence of electrolytes (TEABF4 and TEMABF4) on electrochemical performance of graphite oxide derived from needle coke. Yang S; Kim IJ; Choi IS; Bae MK; Kim HS J Nanosci Nanotechnol; 2013 May; 13(5):3747-51. PubMed ID: 23858941 [TBL] [Abstract][Full Text] [Related]
20. Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. Rock SE; Wu L; Crain DJ; Krishnan S; Roy D ACS Appl Mater Interfaces; 2013 Mar; 5(6):2075-84. PubMed ID: 23432452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]