These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
488 related articles for article (PubMed ID: 23086915)
1. Angiotensin-(1-7) reduces the perfusion pressure response to angiotensin II and methoxamine via an endothelial nitric oxide-mediated pathway in cirrhotic rat liver. Herath CB; Mak K; Burrell LM; Angus PW Am J Physiol Gastrointest Liver Physiol; 2013 Jan; 304(1):G99-108. PubMed ID: 23086915 [TBL] [Abstract][Full Text] [Related]
2. Activation of the MAS receptor by angiotensin-(1-7) in the renin-angiotensin system mediates mesenteric vasodilatation in cirrhosis. Grace JA; Klein S; Herath CB; Granzow M; Schierwagen R; Masing N; Walther T; Sauerbruch T; Burrell LM; Angus PW; Trebicka J Gastroenterology; 2013 Oct; 145(4):874-884.e5. PubMed ID: 23796456 [TBL] [Abstract][Full Text] [Related]
3. Angiotensin-(1-7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways. Xiao X; Zhang C; Ma X; Miao H; Wang J; Liu L; Chen S; Zeng R; Chen Y; Bihl JC Exp Cell Res; 2015 Aug; 336(1):58-65. PubMed ID: 26101159 [TBL] [Abstract][Full Text] [Related]
4. Evidence for a functional interaction of the angiotensin-(1-7) receptor Mas with AT1 and AT2 receptors in the mouse heart. Castro CH; Santos RA; Ferreira AJ; Bader M; Alenina N; Almeida AP Hypertension; 2005 Oct; 46(4):937-42. PubMed ID: 16157793 [TBL] [Abstract][Full Text] [Related]
6. Chronic intermittent hypoxia aggravates intrahepatic endothelial dysfunction in cirrhotic rats. Hernández-Guerra M; de Ganzo ZA; González-Méndez Y; Salido E; Abreu P; Moreno M; Felipe V; Abrante B; Quintero E Hepatology; 2013 Apr; 57(4):1564-74. PubMed ID: 23174804 [TBL] [Abstract][Full Text] [Related]
7. Angiotensin II relaxations of bovine adrenal cortical arteries: role of angiotensin II metabolites and endothelial nitric oxide. Gauthier KM; Zhang DX; Cui L; Nithipatikom K; Campbell WB Hypertension; 2008 Jul; 52(1):150-5. PubMed ID: 18490519 [TBL] [Abstract][Full Text] [Related]
8. Upregulation of ERK1/2-eNOS via AT2 receptors decreases the contractile response to angiotensin II in resistance mesenteric arteries from obese rats. Hagihara GN; Lobato NS; Filgueira FP; Akamine EH; Aragão DS; Casarini DE; Carvalho MH; Fortes ZB PLoS One; 2014; 9(8):e106029. PubMed ID: 25170617 [TBL] [Abstract][Full Text] [Related]
9. Esophagoprotective activity of angiotensin-(1-7) in experimental model of acute reflux esophagitis. Evidence for the role of nitric oxide, sensory nerves, hypoxia-inducible factor-1alpha and proinflammatory cytokines. Pawlik MW; Kwiecien S; Pajdo R; Ptak-Belowska A; Brzozowski B; Krzysiek-Maczka G; Strzalka M; Konturek SJ; Brzozowski T J Physiol Pharmacol; 2014 Dec; 65(6):809-22. PubMed ID: 25554985 [TBL] [Abstract][Full Text] [Related]
10. Angiotensin-(1-7) potentiates responses to bradykinin but does not change responses to angiotensin I. Greco AJ; Master RG; Fokin A; Baber SR; Kadowitz PJ Can J Physiol Pharmacol; 2006 Nov; 84(11):1163-75. PubMed ID: 17218981 [TBL] [Abstract][Full Text] [Related]
11. The PI3K signaling-mediated nitric oxide contributes to cardiovascular effects of angiotensin-(1-7) in the nucleus tractus solitarii of rats. Wu ZT; Ren CZ; Yang YH; Zhang RW; Sun JC; Wang YK; Su DF; Wang WZ Nitric Oxide; 2016 Jan; 52():56-65. PubMed ID: 26686278 [TBL] [Abstract][Full Text] [Related]
13. Loss of biphasic effect on Na/K-ATPase activity by angiotensin II involves defective angiotensin type 1 receptor-nitric oxide signaling. Banday AA; Lokhandwala MF Hypertension; 2008 Dec; 52(6):1099-105. PubMed ID: 18955661 [TBL] [Abstract][Full Text] [Related]
14. The endothelium-dependent vasodilator effect of the nonpeptide Ang(1-7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. Lemos VS; Silva DM; Walther T; Alenina N; Bader M; Santos RA J Cardiovasc Pharmacol; 2005 Sep; 46(3):274-9. PubMed ID: 16116331 [TBL] [Abstract][Full Text] [Related]
15. Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. Durand MJ; Raffai G; Weinberg BD; Lombard JH Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1024-33. PubMed ID: 20656887 [TBL] [Abstract][Full Text] [Related]
16. Angiotensin II stimulates nitric oxide production in pulmonary artery endothelium via the type 2 receptor. Olson S; Oeckler R; Li X; Du L; Traganos F; Zhao X; Burke-Wolin T Am J Physiol Lung Cell Mol Physiol; 2004 Sep; 287(3):L559-68. PubMed ID: 15155270 [TBL] [Abstract][Full Text] [Related]
17. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Sampaio WO; Souza dos Santos RA; Faria-Silva R; da Mata Machado LT; Schiffrin EL; Touyz RM Hypertension; 2007 Jan; 49(1):185-92. PubMed ID: 17116756 [TBL] [Abstract][Full Text] [Related]
18. Stimulation of ANP by angiotensin-(1-9) via the angiotensin type 2 receptor. Cha SA; Park BM; Gao S; Kim SH Life Sci; 2013 Dec; 93(24):934-40. PubMed ID: 24177599 [TBL] [Abstract][Full Text] [Related]
19. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Stennett AK; Qiao X; Falone AE; Koledova VV; Khalil RA Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H745-55. PubMed ID: 19151255 [TBL] [Abstract][Full Text] [Related]
20. Deficit in nitric oxide production in cirrhotic rat livers is located in the sinusoidal and postsinusoidal areas. Loureiro-Silva MR; Cadelina GW; Groszmann RJ Am J Physiol Gastrointest Liver Physiol; 2003 Apr; 284(4):G567-74. PubMed ID: 12490431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]