These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 23086947)

  • 1. Sirtuin catalysis and regulation.
    Feldman JL; Dittenhafer-Reed KE; Denu JM
    J Biol Chem; 2012 Dec; 287(51):42419-27. PubMed ID: 23086947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for sirtuin activity and inhibition.
    Yuan H; Marmorstein R
    J Biol Chem; 2012 Dec; 287(51):42428-35. PubMed ID: 23086949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators.
    Klein MA; Denu JM
    J Biol Chem; 2020 Aug; 295(32):11021-11041. PubMed ID: 32518153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New assays and approaches for discovery and design of Sirtuin modulators.
    Schutkowski M; Fischer F; Roessler C; Steegborn C
    Expert Opin Drug Discov; 2014 Feb; 9(2):183-99. PubMed ID: 24382304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism-based modulator discovery for sirtuin-catalyzed deacetylation reaction.
    Zheng W
    Mini Rev Med Chem; 2013 Jan; 13(1):132-54. PubMed ID: 22876953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant Preparation, Biochemical Analysis, and Structure Determination of Sirtuin Family Histone/Protein Deacylases.
    Suenkel B; Steegborn C
    Methods Enzymol; 2016; 573():183-208. PubMed ID: 27372754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using mitochondrial sirtuins as drug targets: disease implications and available compounds.
    Gertz M; Steegborn C
    Cell Mol Life Sci; 2016 Aug; 73(15):2871-96. PubMed ID: 27007507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological and potential therapeutic roles of sirtuin deacetylases.
    Taylor DM; Maxwell MM; Luthi-Carter R; Kazantsev AG
    Cell Mol Life Sci; 2008 Dec; 65(24):4000-18. PubMed ID: 18820996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of Sirtuins as potential therapeutic target: Structure, function and modulators.
    Wang Y; He J; Liao M; Hu M; Li W; Ouyang H; Wang X; Ye T; Zhang Y; Ouyang L
    Eur J Med Chem; 2019 Jan; 161():48-77. PubMed ID: 30342425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases.
    Wagner GR; Hirschey MD
    Mol Cell; 2014 Apr; 54(1):5-16. PubMed ID: 24725594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sirtuin functions and modulation: from chemistry to the clinic.
    Carafa V; Rotili D; Forgione M; Cuomo F; Serretiello E; Hailu GS; Jarho E; Lahtela-Kakkonen M; Mai A; Altucci L
    Clin Epigenetics; 2016; 8():61. PubMed ID: 27226812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biology, Chemistry, and Pharmacology of Sirtuins.
    Bedalov A; Chowdhury S; Simon JA
    Methods Enzymol; 2016; 574():183-211. PubMed ID: 27423863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Sir2 family of protein deacetylases.
    Blander G; Guarente L
    Annu Rev Biochem; 2004; 73():417-35. PubMed ID: 15189148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Sir 2 family of protein deacetylases.
    Denu JM
    Curr Opin Chem Biol; 2005 Oct; 9(5):431-40. PubMed ID: 16122969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.
    Du J; Jiang H; Lin H
    Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity hot-spots of sirtuin catalytic cores.
    Parenti MD; Bruzzone S; Nencioni A; Del Rio A
    Mol Biosyst; 2015 Aug; 11(8):2263-72. PubMed ID: 26061123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional Regulation of Metabolism by SIRT1 and SIRT7.
    Yamagata K; Yoshizawa T
    Int Rev Cell Mol Biol; 2018; 335():143-166. PubMed ID: 29305011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis of Sirtuin 6 Activation by Synthetic Small Molecules.
    You W; Rotili D; Li TM; Kambach C; Meleshin M; Schutkowski M; Chua KF; Mai A; Steegborn C
    Angew Chem Int Ed Engl; 2017 Jan; 56(4):1007-1011. PubMed ID: 27990725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Current State of NAD
    Schiedel M; Robaa D; Rumpf T; Sippl W; Jung M
    Med Res Rev; 2018 Jan; 38(1):147-200. PubMed ID: 28094444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.