BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23087322)

  • 1. Effects of site-directed mutagenesis in the N-terminal domain of thermolysin on its stabilization.
    Kawasaki Y; Yasukawa K; Inouye K
    J Biochem; 2013 Jan; 153(1):85-92. PubMed ID: 23087322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the activity and stability of thermolysin by site-directed mutagenesis.
    Yasukawa K; Inouye K
    Biochim Biophys Acta; 2007 Oct; 1774(10):1281-8. PubMed ID: 17869197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the mutational combinations on the activity and stability of thermolysin.
    Kusano M; Yasukawa K; Inouye K
    J Biotechnol; 2010 May; 147(1):7-16. PubMed ID: 20214932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of site-directed mutagenesis of Asn116 in the β-hairpin of the N-terminal domain of thermolysin on its activity and stability.
    Menach E; Yasukawa K; Inouye K
    J Biochem; 2012 Sep; 152(3):231-9. PubMed ID: 22648563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of introducing negative charges into the molecular surface of thermolysin by site-directed mutagenesis on its activity and stability.
    Takita T; Aono T; Sakurama H; Itoh T; Wada T; Minoda M; Yasukawa K; Inouye K
    Biochim Biophys Acta; 2008 Mar; 1784(3):481-8. PubMed ID: 18187054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of autodegradation sites of thermolysin and enhancement of its thermostability by modifying Leu155 at an autodegradation site.
    Matsumiya Y; Nishikawa K; Aoshima H; Inouye K; Kubo M
    J Biochem; 2004 Apr; 135(4):547-53. PubMed ID: 15115781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further stabilization of Leu¹⁵⁵ mutant thermolysins by mutation of an autodegradation site.
    Matsumiya Y; Murata N; Inouye K; Kubo M
    Appl Biochem Biotechnol; 2012 Feb; 166(3):735-43. PubMed ID: 22139731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of Val 315 located in the C-terminal region of thermolysin in its expression in Escherichia coli and its thermal stability.
    Kojima K; Nakata H; Inouye K
    Biochim Biophys Acta; 2014 Feb; 1844(2):330-8. PubMed ID: 24192395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An engineered disulfide bridge mimics the effect of calcium to protect neutral protease against local unfolding.
    Dürrschmidt P; Mansfeld J; Ulbrich-Hofmann R
    FEBS J; 2005 Mar; 272(6):1523-34. PubMed ID: 15752367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity.
    Tatsumi C; Hashida Y; Yasukawa K; Inouye K
    J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases.
    Vriend G; Eijsink V
    J Comput Aided Mol Des; 1993 Aug; 7(4):367-96. PubMed ID: 8229092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of conversion of the zinc-binding motif sequence of thermolysin, HEXXH, to that of dipeptidyl peptidase III, HEXXXH, on the activity and stability of thermolysin.
    Menach E; Hashida Y; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2013; 77(9):1901-6. PubMed ID: 24018667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of bound calcium ions in thermostable, proteolytic enzymes. II. Studies on thermolysin, the thermostable protease from Bacillus thermoproteolyticus.
    Voordouw G; Roche RS
    Biochemistry; 1975 Oct; 14(21):4667-73. PubMed ID: 1182109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of mutations of thermolysin, as N116 to asp and asp150 to glu, on salt-induced activation and stabilization.
    Menach E; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2013; 77(4):741-6. PubMed ID: 23563542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational effect for stability in a conserved region of thermolysin.
    Matsumiya Y; Nishikawa K; Inouye K; Kubo M
    Lett Appl Microbiol; 2005; 40(5):329-34. PubMed ID: 15836734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific and random immobilization of thermolysin-like proteases reflected in the thermal inactivation kinetics.
    Mansfeld J; Ulbrich-Hofmann R
    Biotechnol Appl Biochem; 2000 Dec; 32(3):189-95. PubMed ID: 11115391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the catalytic roles of the polypeptide regions in the active site of thermolysin and generation of the thermolysin variants with high activity and stability.
    Kusano M; Yasukawa K; Inouye K
    J Biochem; 2009 Jan; 145(1):103-13. PubMed ID: 18974160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in transition state stabilization between thermolysin (EC 3.4.24.27) and neprilysin (EC 3.4.24.11).
    Marie-Claire C; Ruffet E; Tiraboschi G; Fournie-Zaluski MC
    FEBS Lett; 1998 Nov; 438(3):215-9. PubMed ID: 9827548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.