These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23087379)

  • 1. Mesoscopic model parametrization of hydrogen bonds and stacking interactions of RNA from melting temperatures.
    Weber G
    Nucleic Acids Res; 2013 Jan; 41(1):e30. PubMed ID: 23087379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Hydrogen Bonds and Base Stacking of Single, Tandem and Terminal GU Mismatches in RNA with a Mesoscopic Model.
    Amarante TD; Weber G
    J Chem Inf Model; 2016 Jan; 56(1):101-9. PubMed ID: 26624232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt dependent mesoscopic model for RNA at multiple strand concentrations.
    Ferreira I; Amarante TD; Weber G
    Biophys Chem; 2021 Apr; 271():106551. PubMed ID: 33662903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscopic modelling of Cy3 and Cy5 dyes attached to DNA duplexes.
    Miranda P; Oliveira LM; Weber G
    Biophys Chem; 2017 Nov; 230():62-67. PubMed ID: 28965786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictions and analyses of RNA nearest neighbor parameters for modified nucleotides.
    Hopfinger MC; Kirkpatrick CC; Znosko BM
    Nucleic Acids Res; 2020 Sep; 48(16):8901-8913. PubMed ID: 32810273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation.
    Lu ZJ; Turner DH; Mathews DH
    Nucleic Acids Res; 2006; 34(17):4912-24. PubMed ID: 16982646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting temperature measurement and mesoscopic evaluation of single, double and triple DNA mismatches.
    Oliveira LM; Long AS; Brown T; Fox KR; Weber G
    Chem Sci; 2020 Jul; 11(31):8273-8287. PubMed ID: 34094181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stacking interactions in denaturation of DNA fragments.
    Zoli M
    Eur Phys J E Soft Matter; 2011 Jul; 34(7):68. PubMed ID: 21751094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs.
    Xia T; SantaLucia J; Burkard ME; Kierzek R; Schroeder SJ; Jiao X; Cox C; Turner DH
    Biochemistry; 1998 Oct; 37(42):14719-35. PubMed ID: 9778347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TfReg: calculating DNA and RNA melting temperatures and opening profiles with mesoscopic models.
    Weber G
    Bioinformatics; 2013 May; 29(10):1345-7. PubMed ID: 23505297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical mechanics of base stacking and pairing in DNA melting.
    Ivanov V; Zeng Y; Zocchi G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051907. PubMed ID: 15600656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical studies on the intermolecular interactions of potentially primordial base-pair analogues.
    Sponer JE; Vázquez-Mayagoitia A; Sumpter BG; Leszczynski J; Sponer J; Otyepka M; Banás P; Fuentes-Cabrera M
    Chemistry; 2010 Mar; 16(10):3057-65. PubMed ID: 20119984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Database of non-canonical base pairs found in known RNA structures.
    Nagaswamy U; Voss N; Zhang Z; Fox GE
    Nucleic Acids Res; 2000 Jan; 28(1):375-6. PubMed ID: 10592279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct identification of NH...N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy.
    Wöhnert J; Dingley AJ; Stoldt M; Görlach M; Grzesiek S; Brown LR
    Nucleic Acids Res; 1999 Aug; 27(15):3104-10. PubMed ID: 10454606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N1...N3 hydrogen bonds of A:U base pairs of RNA are stronger than those of A:T base pairs of DNA.
    Vakonakis I; LiWang AC
    J Am Chem Soc; 2004 May; 126(18):5688-9. PubMed ID: 15125660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation.
    Palmeri J; Manghi M; Destainville N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011913. PubMed ID: 18351882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete Mesoscopic Parameterization of Single LNA Modifications in DNA Applied to Oncogene Probe Design.
    Ferreira I; Slott S; Astakhova K; Weber G
    J Chem Inf Model; 2021 Jul; 61(7):3615-3624. PubMed ID: 34251211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular thermodynamic model for DNA melting in ionic and crowded solutions.
    Liu Y; Kermanpour F; Liu HL; Hu Y; Shang YZ; Sandler SI; Jiang JW
    J Phys Chem B; 2010 Aug; 114(30):9905-11. PubMed ID: 20666530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MELTING, a flexible platform to predict the melting temperatures of nucleic acids.
    Dumousseau M; Rodriguez N; Juty N; Le Novère N
    BMC Bioinformatics; 2012 May; 13():101. PubMed ID: 22591039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains.
    Cheng AC; Chen WW; Fuhrmann CN; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):781-96. PubMed ID: 12654263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.