BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23087403)

  • 1. Identification of core DNA elements that target somatic hypermutation.
    Kohler KM; McDonald JJ; Duke JL; Arakawa H; Tan S; Kleinstein SH; Buerstedde JM; Schatz DG
    J Immunol; 2012 Dec; 189(11):5314-26. PubMed ID: 23087403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical context-dependent role for E boxes in the targeting of somatic hypermutation.
    McDonald JJ; Alinikula J; Buerstedde JM; Schatz DG
    J Immunol; 2013 Aug; 191(4):1556-66. PubMed ID: 23836058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences.
    Yang SY; Fugmann SD; Schatz DG
    J Exp Med; 2006 Dec; 203(13):2919-28. PubMed ID: 17178919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ig Enhancers Increase RNA Polymerase II Stalling at Somatic Hypermutation Target Sequences.
    Tarsalainen A; Maman Y; Meng FL; Kyläniemi MK; Soikkeli A; Budzyńska P; McDonald JJ; Šenigl F; Alt FW; Schatz DG; Alinikula J
    J Immunol; 2022 Jan; 208(1):143-154. PubMed ID: 34862258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biased dA/dT somatic hypermutation as regulated by the heavy chain intronic iEmu enhancer and 3'Ealpha enhancers in human lymphoblastoid B cells.
    Komori A; Xu Z; Wu X; Zan H; Casali P
    Mol Immunol; 2006 Apr; 43(11):1817-26. PubMed ID: 16412510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balancing AID and DNA repair during somatic hypermutation.
    Liu M; Schatz DG
    Trends Immunol; 2009 Apr; 30(4):173-81. PubMed ID: 19303358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attracting AID to targets of somatic hypermutation.
    Tanaka A; Shen HM; Ratnam S; Kodgire P; Storb U
    J Exp Med; 2010 Feb; 207(2):405-15. PubMed ID: 20100870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1.
    Kanehiro Y; Todo K; Negishi M; Fukuoka J; Gan W; Hikasa T; Kaga Y; Takemoto M; Magari M; Li X; Manley JL; Ohmori H; Kanayama N
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1216-21. PubMed ID: 22232677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AID preferentially targets the top strand in nucleosome sequences.
    Singh AK; Jaiswal A; Kodgire P
    Mol Immunol; 2019 Aug; 112():198-205. PubMed ID: 31176199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA polymerases β and λ do not directly affect Ig variable region somatic hypermutation although their absence reduces the frequency of mutations.
    Schrader CE; Linehan EK; Ucher AJ; Bertocci B; Stavnezer J
    DNA Repair (Amst); 2013 Dec; 12(12):1087-93. PubMed ID: 24084171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of activation-induced deaminase protein kinase A phosphorylation sites in Ig gene conversion and somatic hypermutation.
    Chatterji M; Unniraman S; McBride KM; Schatz DG
    J Immunol; 2007 Oct; 179(8):5274-80. PubMed ID: 17911613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible contribution of DNase gamma to immunoglobulin V gene diversification.
    Okamoto N; Okamoto M; Araki S; Arakawa H; Mizuta R; Kitamura D
    Immunol Lett; 2009 Jun; 125(1):22-30. PubMed ID: 19501119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences.
    Buerstedde JM; Alinikula J; Arakawa H; McDonald JJ; Schatz DG
    PLoS Biol; 2014 Apr; 12(4):e1001831. PubMed ID: 24691034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatic hypermutation of the AID transgene in B and non-B cells.
    Martin A; Scharff MD
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12304-8. PubMed ID: 12202747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination.
    Hackney JA; Misaghi S; Senger K; Garris C; Sun Y; Lorenzo MN; Zarrin AA
    Adv Immunol; 2009; 101():163-89. PubMed ID: 19231595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restriction of AID activity and somatic hypermutation by PARP-1.
    Tepper S; Mortusewicz O; Członka E; Bello A; Schmidt A; Jeschke J; Fischbach A; Pfeil I; Petersen-Mahrt SK; Mangerich A; Helleday T; Leonhardt H; Jungnickel B
    Nucleic Acids Res; 2019 Aug; 47(14):7418-7429. PubMed ID: 31127309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Splicing regulator SRSF1-3 that controls somatic hypermutation of IgV genes interacts with topoisomerase 1 and AID.
    Kumar Singh A; Tamrakar A; Jaiswal A; Kanayama N; Agarwal A; Tripathi P; Kodgire P
    Mol Immunol; 2019 Dec; 116():63-72. PubMed ID: 31622795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topoisomerase I deficiency causes RNA polymerase II accumulation and increases AID abundance in immunoglobulin variable genes.
    Maul RW; Saribasak H; Cao Z; Gearhart PJ
    DNA Repair (Amst); 2015 Jun; 30():46-52. PubMed ID: 25869824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutating for Good: DNA Damage Responses During Somatic Hypermutation.
    Pilzecker B; Jacobs H
    Front Immunol; 2019; 10():438. PubMed ID: 30915081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism of immunoglobulin V-region diversification regulated by transcription and RNA metabolism in antigen-driven B cells.
    Sakaguchi N; Maeda K; Kuwahara K
    Scand J Immunol; 2011 Jun; 73(6):520-6. PubMed ID: 21388430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.