BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 23087677)

  • 1. Synechococcus sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions.
    Ludwig M; Bryant DA
    Front Microbiol; 2012; 3():354. PubMed ID: 23087677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acclimation of the Global Transcriptome of the Cyanobacterium Synechococcus sp. Strain PCC 7002 to Nutrient Limitations and Different Nitrogen Sources.
    Ludwig M; Bryant DA
    Front Microbiol; 2012; 3():145. PubMed ID: 22514553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freshwater Cyanobacterium
    Liang Y; Zhang M; Wang M; Zhang W; Qiao C; Luo Q; Lu X
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic and Transcriptomic Insights into Salinity Tolerance-Based Niche Differentiation of
    Xia X; Liao Y; Liu J; Leung SK; Lee PY; Zhang L; Tan Y; Liu H
    mSystems; 2023 Feb; 8(1):e0110622. PubMed ID: 36622156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of the heat shock protein ClpB affects cold acclimation in the cyanobacterium Synechococcus sp. strain PCC 7942.
    Porankiewicz J; Clarke AK
    J Bacteriol; 1997 Aug; 179(16):5111-7. PubMed ID: 9260953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment.
    Aikawa S; Nishida A; Ho SH; Chang JS; Hasunuma T; Kondo A
    Biotechnol Biofuels; 2014; 7():88. PubMed ID: 24959200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942.
    Eriksson MJ; Clarke AK
    J Bacteriol; 1996 Aug; 178(16):4839-46. PubMed ID: 8759846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Sakamoto T; Bryant DA
    Mol Microbiol; 1997 Mar; 23(6):1281-92. PubMed ID: 9106218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and Regulation of Genes for Cobalamin Transport in the Cyanobacterium Synechococcus sp. Strain PCC 7002.
    Pérez AA; Rodionov DA; Bryant DA
    J Bacteriol; 2016 Oct; 198(19):2753-61. PubMed ID: 27457716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for the cyanobacterial HtpG in protection from oxidative stress.
    Hossain MM; Nakamoto H
    Curr Microbiol; 2003 Jan; 46(1):70-6. PubMed ID: 12432468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of Euryhaline Phycoerythrobilin-Containing
    Xia X; Lee P; Cheung S; Lu Y; Liu H
    mSystems; 2020 Dec; 5(6):. PubMed ID: 33323414
    [No Abstract]   [Full Text] [Related]  

  • 12. Growth engineering of Synechococcus elongatus PCC 7942 for mixotrophy under natural light conditions for improved feedstock production.
    Sarnaik A; Pandit R; Lali A
    Biotechnol Prog; 2017 Sep; 33(5):1182-1192. PubMed ID: 28445599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Specific Single Nucleotide Polymorphism in the ATP Synthase Gene Significantly Improves Environmental Stress Tolerance of Synechococcus elongatus PCC 7942.
    Lou W; Tan X; Song K; Zhang S; Luan G; Li C; Lu X
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription Profiling of the Model Cyanobacterium Synechococcus sp. Strain PCC 7002 by Next-Gen (SOLiD™) Sequencing of cDNA.
    Ludwig M; Bryant DA
    Front Microbiol; 2011; 2():41. PubMed ID: 21779275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of proper reference genes for the cyanobacterium Synechococcus PCC 7002 using real-time quantitative PCR.
    Szekeres E; Sicora C; Dragoş N; Drugă B
    FEMS Microbiol Lett; 2014 Oct; 359(1):102-9. PubMed ID: 25115691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002.
    Sakamoto T; Higashi S; Wada H; Murata N; Bryant DA
    FEMS Microbiol Lett; 1997 Jul; 152(2):313-20. PubMed ID: 9231425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles for heme-copper oxidases in extreme high-light and oxidative stress response in the cyanobacterium Synechococcus sp. PCC 7002.
    Nomura CT; Sakamoto T; Bryant DA
    Arch Microbiol; 2006 Jun; 185(6):471-9. PubMed ID: 16775753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative analysis of the salt stress response in cyanobacteria.
    Klähn S; Mikkat S; Riediger M; Georg J; Hess WR; Hagemann M
    Biol Direct; 2021 Dec; 16(1):26. PubMed ID: 34906211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference of interactions in cyanobacterial-heterotrophic co-cultures via transcriptome sequencing.
    Beliaev AS; Romine MF; Serres M; Bernstein HC; Linggi BE; Markillie LM; Isern NG; Chrisler WB; Kucek LA; Hill EA; Pinchuk GE; Bryant DA; Wiley HS; Fredrickson JK; Konopka A
    ISME J; 2014 Nov; 8(11):2243-55. PubMed ID: 24781900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress.
    Blot N; Mella-Flores D; Six C; Le Corguillé G; Boutte C; Peyrat A; Monnier A; Ratin M; Gourvil P; Campbell DA; Garczarek L
    Plant Physiol; 2011 Aug; 156(4):1934-54. PubMed ID: 21670225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.