These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 23087914)
1. A study of adulteration in gasoline samples using flame emission spectroscopy and chemometrics tools. de Paulo JM; Mendes G; Barros JE; Barbeira PJ Analyst; 2012 Dec; 137(24):5919-24. PubMed ID: 23087914 [TBL] [Abstract][Full Text] [Related]
2. Identification of gasoline adulteration using comprehensive two-dimensional gas chromatography combined to multivariate data processing. Pedroso MP; de Godoy LA; Ferreira EC; Poppi RJ; Augusto F J Chromatogr A; 2008 Aug; 1201(2):176-82. PubMed ID: 18571187 [TBL] [Abstract][Full Text] [Related]
3. Quality assessment of gasoline using comprehensive two-dimensional gas chromatography combined with unfolded partial least squares: A reliable approach for the detection of gasoline adulteration. Parastar H; Mostafapour S; Azimi G J Sep Sci; 2016 Jan; 39(2):367-74. PubMed ID: 26541637 [TBL] [Abstract][Full Text] [Related]
4. Determination of ethanol and specific gravity in gasoline by distillation curves and multivariate analysis. Aleme HG; Costa LM; Barbeira PJ Talanta; 2009 Jun; 78(4-5):1422-8. PubMed ID: 19362211 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous determination of methanol and ethanol in gasoline using NIR spectroscopy: effect of gasoline composition. Fernandes HL; Raimundo IM; Pasquini C; Rohwedder JJ Talanta; 2008 May; 75(3):804-10. PubMed ID: 18585150 [TBL] [Abstract][Full Text] [Related]
6. Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study. Divya O; Mishra AK Anal Chim Acta; 2007 May; 592(1):82-90. PubMed ID: 17499074 [TBL] [Abstract][Full Text] [Related]
7. Detection of adulteration in hydrated ethyl alcohol fuel using infrared spectroscopy and supervised pattern recognition methods. Silva AC; Pontes LF; Pimentel MF; Pontes MJ Talanta; 2012 May; 93():129-34. PubMed ID: 22483888 [TBL] [Abstract][Full Text] [Related]
8. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods. Brandão LF; Braga JW; Suarez PA J Chromatogr A; 2012 Feb; 1225():150-7. PubMed ID: 22257926 [TBL] [Abstract][Full Text] [Related]
9. Toward the development of Raman spectroscopy as a nonperturbative online monitoring tool for gasoline adulteration. Tan KM; Barman I; Dingari NC; Singh GP; Chia TF; Tok WL Anal Chem; 2013 Feb; 85(3):1846-51. PubMed ID: 23259604 [TBL] [Abstract][Full Text] [Related]
10. Classification of Brazilian and foreign gasolines adulterated with alcohol using infrared spectroscopy. da Silva NC; Pimentel MF; Honorato RS; Talhavini M; Maldaner AO; Honorato FA Forensic Sci Int; 2015 Aug; 253():33-42. PubMed ID: 26042439 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous detection for adulterations of maltodextrin, sodium carbonate, and whey in raw milk using Raman spectroscopy and chemometrics. Tian H; Chen S; Li D; Lou X; Chen C; Yu H J Dairy Sci; 2022 Sep; 105(9):7242-7252. PubMed ID: 35863924 [TBL] [Abstract][Full Text] [Related]
12. Detection of adulterations in a valuable Brazilian honey by using spectrofluorimetry and multiway classification. Antônio DC; de Assis DCS; Botelho BG; Sena MM Food Chem; 2022 Feb; 370():131064. PubMed ID: 34537433 [TBL] [Abstract][Full Text] [Related]
13. Determination of butter adulteration with margarine using Raman spectroscopy. Uysal RS; Boyaci IH; Genis HE; Tamer U Food Chem; 2013 Dec; 141(4):4397-403. PubMed ID: 23993631 [TBL] [Abstract][Full Text] [Related]
14. [Determination of adulteration in honey using near-infrared spectroscopy]. Chen LZ; Zhao J; Ye ZH; Zhong YP Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2565-8. PubMed ID: 19271491 [TBL] [Abstract][Full Text] [Related]
15. Fuel forensics: Recent advancements in profiling of adulterated fuels by ATR-FTIR spectroscopy and chemometric approaches. Babu BK; Manohar Yadav M; Singh S; Kumar Yadav V Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 312():124049. PubMed ID: 38394884 [TBL] [Abstract][Full Text] [Related]
16. Dispersive Raman spectroscopy and multivariate data analysis to detect offal adulteration of thawed beefburgers. Zhao M; Downey G; O'Donnell CP J Agric Food Chem; 2015 Feb; 63(5):1433-41. PubMed ID: 25526381 [TBL] [Abstract][Full Text] [Related]
18. Identification and quantification of industrial grade glycerol adulteration in red wine with fourier transform infrared spectroscopy using chemometrics and artificial neural networks. Dixit V; Tewari JC; Cho BK; Irudayaraj JM Appl Spectrosc; 2005 Dec; 59(12):1553-61. PubMed ID: 16390596 [TBL] [Abstract][Full Text] [Related]
19. Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants. Castro RC; Ribeiro DSM; Santos JLM; Páscoa RNMJ Talanta; 2021 Aug; 230():122373. PubMed ID: 33934802 [TBL] [Abstract][Full Text] [Related]
20. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meza-Márquez OG; Gallardo-Velázquez T; Osorio-Revilla G Meat Sci; 2010 Oct; 86(2):511-9. PubMed ID: 20598447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]