These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 23088098)

  • 41. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth.
    Robert C; Bancal MO; Nicolas P; Lannou C; Ney B
    J Exp Bot; 2004 May; 55(399):1079-94. PubMed ID: 15073221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The life history of Pseudomonas syringae: linking agriculture to earth system processes.
    Morris CE; Monteil CL; Berge O
    Annu Rev Phytopathol; 2013; 51():85-104. PubMed ID: 23663005
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wheat (Triticum aestivum L.) response to a zinc fertilizer applied as zinc lignosulfonate adhered to a NPK fertilizer.
    Martín-Ortiz D; Hernández-Apaolaza L; Gárate A
    J Agric Food Chem; 2010 Jul; 58(13):7886-92. PubMed ID: 20527916
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of type IV pili in virulence of Pseudomonas syringae pv. tabaci 6605: correlation of motility, multidrug resistance, and HR-inducing activity on a nonhost plant.
    Taguchi F; Ichinose Y
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1001-11. PubMed ID: 21615203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium efflux as a component of the hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae.
    Nemchinov LG; Shabala L; Shabala S
    Plant Cell Physiol; 2008 Jan; 49(1):40-6. PubMed ID: 18048411
    [TBL] [Abstract][Full Text] [Related]  

  • 46. AlgW regulates multiple Pseudomonas syringae virulence strategies.
    Schreiber KJ; Desveaux D
    Mol Microbiol; 2011 Apr; 80(2):364-77. PubMed ID: 21306444
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surprising niche for the plant pathogen Pseudomonas syringae.
    Morris CE; Kinkel LL; Xiao K; Prior P; Sands DC
    Infect Genet Evol; 2007 Jan; 7(1):84-92. PubMed ID: 16807133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions.
    Bordiec S; Paquis S; Lacroix H; Dhondt S; Ait Barka E; Kauffmann S; Jeandet P; Mazeyrat-Gourbeyre F; Clément C; Baillieul F; Dorey S
    J Exp Bot; 2011 Jan; 62(2):595-603. PubMed ID: 20881012
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interference of quorum sensing in Pseudomonas syringae by bacterial epiphytes that limit iron availability.
    Dulla GF; Krasileva KV; Lindow SE
    Environ Microbiol; 2010 Jun; 12(6):1762-74. PubMed ID: 20553555
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing efficiency of fertilizer N use in rice-wheat systems of Indo-Gangetic Plains by intercropping Sesbania aculeata in direct seeded upland rice for green manuring.
    Yadav RL
    Bioresour Technol; 2004 Jun; 93(2):213-5. PubMed ID: 15051085
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wheat reaction to leaf rust and Septoria tritici blotch in four fertilization conditions.
    Gonçalves MJ; Bagulho AS; Da Silva MJ; Carvalho MT
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1081-5. PubMed ID: 17390862
    [No Abstract]   [Full Text] [Related]  

  • 52. 3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea.
    Braun SD; Völksch B; Nüske J; Spiteller D
    Chembiochem; 2008 Aug; 9(12):1913-20. PubMed ID: 18655083
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploring the resilience of wheat crops grown in short rotations through minimising the build-up of an important soil-borne fungal pathogen.
    McMillan VE; Canning G; Moughan J; White RP; Gutteridge RJ; Hammond-Kosack KE
    Sci Rep; 2018 Jun; 8(1):9550. PubMed ID: 29934522
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Influence of Pseudomonas syringae pv. atrofaciens Lipopolysaccharides on Physiological and Biochemical Processes in Allium cepa Cells].
    Butsenko LM
    Mikrobiol Z; 2016; 78(5):65-74. PubMed ID: 30141866
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrated management of wild chamomile (Matricaria chamomilla L.) populations by tillage.
    Jaunard D; Monty A; Henriet F; De Proft M; Mahy G; Bodson B
    Commun Agric Appl Biol Sci; 2013; 78(3):657-63. PubMed ID: 25151843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epigenetic diversity increases the productivity and stability of plant populations.
    Latzel V; Allan E; Bortolini Silveira A; Colot V; Fischer M; Bossdorf O
    Nat Commun; 2013; 4():2875. PubMed ID: 24285012
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phytopathogenic bacteria in the system of modern agriculture.
    Patyka VP; Pasichnyk LA
    Mikrobiol Z; 2014; 76(1):21-6. PubMed ID: 24800511
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of mechanical weeding on wild chamomile (Matricaria chamomilla L.) populations in winter wheat crop (Triticum aestivum L.).
    Jaunard D; Bizoux JP; Monty A; Henriet F; De Proft M; Vancutsem F; Mahy G; Bodson B
    Commun Agric Appl Biol Sci; 2012; 77(3):363-8. PubMed ID: 23878991
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Histological examination of horse chestnut infection by Pseudomonas syringae pv. aesculi and non-destructive heat treatment to stop disease progression.
    de Keijzer J; van den Broek LA; Ketelaar T; van Lammeren AA
    PLoS One; 2012; 7(7):e39604. PubMed ID: 22808044
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [PATHOGENIC MIKO,- AND MICROFLORA OF FRAXINUS EXCELSIOR IN PODOLYA UKRAINE].
    Kulbanska IN; Goychuk AF
    Mikrobiol Z; 2015; 77(5):62-9. PubMed ID: 26638486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.