These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23088184)

  • 1. In situ precipitation of amorphous calcium phosphate and ciprofloxacin crystals during the formation of chitosan hydrogels and its application for drug delivery purposes.
    Nardecchia S; Gutiérrez MC; Serrano MC; Dentini M; Barbetta A; Ferrer ML; del Monte F
    Langmuir; 2012 Nov; 28(45):15937-46. PubMed ID: 23088184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineralization of chitosan rods with concentric layered structure induced by chitosan hydrogel.
    Li B; Wang Y; Jia D; Zhou Y; Cai W
    Biomed Mater; 2009 Feb; 4(1):015011. PubMed ID: 19020343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels.
    Schweikle M; Bjørnøy SH; van Helvoort ATJ; Haugen HJ; Sikorski P; Tiainen H
    Acta Biomater; 2019 May; 90():132-145. PubMed ID: 30905863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery.
    Hanna DH; Saad GR
    Bioorg Chem; 2019 Mar; 84():115-124. PubMed ID: 30500521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: a novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation.
    Martins AM; Pereira RC; Leonor IB; Azevedo HS; Reis RL
    Acta Biomater; 2009 Nov; 5(9):3328-36. PubMed ID: 19477305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery.
    Qi C; Zhu YJ; Zhao XY; Lu BQ; Tang QL; Zhao J; Chen F
    Chemistry; 2013 Jan; 19(3):981-7. PubMed ID: 23180605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled superficial assembly of DNA-amorphous calcium phosphate nanocomposite spheres for surface-mediated gene delivery.
    Oyane A; Araki H; Nakamura M; Shimizu Y; Shubhra QTH; Ito A; Tsurushima H
    Colloids Surf B Biointerfaces; 2016 May; 141():519-527. PubMed ID: 26896659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradient structural bone-like apatite induced by chitosan hydrogel via ion assembly.
    Li B; Wang Y; Jia D; Zhou Y
    J Biomater Sci Polym Ed; 2011; 22(4-6):505-17. PubMed ID: 20566043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes.
    Leeuwenburgh SC; Jansen JA; Mikos AG
    J Biomater Sci Polym Ed; 2007; 18(12):1547-64. PubMed ID: 17988519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of calcium phosphates in gelatin with a novel diffusion system.
    Teng S; Shi J; Chen L
    Colloids Surf B Biointerfaces; 2006 Apr; 49(1):87-92. PubMed ID: 16621478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release.
    Zhang Y; Zhang M
    J Biomed Mater Res; 2002 Dec; 62(3):378-86. PubMed ID: 12209923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan gelation induced by the in situ formation of gold nanoparticles and its processing into macroporous scaffolds.
    Hortigüela MJ; Aranaz I; Gutiérrez MC; Ferrer ML; del Monte F
    Biomacromolecules; 2011 Jan; 12(1):179-86. PubMed ID: 21128628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation and evaluation of an in situ gel forming system for controlled delivery of triptorelin acetate.
    Abashzadeh Sh; Dinarvand R; Sharifzadeh M; Hassanzadeh G; Amini M; Atyabi F
    Eur J Pharm Sci; 2011 Nov; 44(4):514-21. PubMed ID: 21946260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles.
    Couto DS; Hong Z; Mano JF
    Acta Biomater; 2009 Jan; 5(1):115-23. PubMed ID: 18835230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium.
    Boucard N; Viton C; Domard A
    Biomacromolecules; 2005; 6(6):3227-37. PubMed ID: 16283750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan-based hydrogels for controlled, localized drug delivery.
    Bhattarai N; Gunn J; Zhang M
    Adv Drug Deliv Rev; 2010 Jan; 62(1):83-99. PubMed ID: 19799949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroporous Calcium Phosphate/Chitosan Composites Prepared via Unidirectional Ice Segregation and Subsequent Freeze-Drying.
    Aranaz I; Martínez-Campos E; Moreno-Vicente C; Civantos A; García-Arguelles S; Del Monte F
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micron range morphology of physical chitosan hydrogels.
    Rivas-Araiza R; Alcouffe P; Rochas C; Montembault A; David L
    Langmuir; 2010 Nov; 26(22):17495-504. PubMed ID: 20879755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan-graft-polyaniline-based hydrogels: elaboration and properties.
    Marcasuzaa P; Reynaud S; Ehrenfeld F; Khoukh A; Desbrieres J
    Biomacromolecules; 2010 Jun; 11(6):1684-91. PubMed ID: 20481581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.