These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 23088410)
1. Identifying indicators of reactivity for chemical reductants in sediments. Zhang H; Weber EJ Environ Sci Technol; 2013 Jul; 47(13):6959-68. PubMed ID: 23088410 [TBL] [Abstract][Full Text] [Related]
2. Influence of dissolved organic matter and Fe(II) on the abiotic reduction of pentachloronitrobenzene. Hakala JA; Chin YP; Weber EJ Environ Sci Technol; 2007 Nov; 41(21):7337-42. PubMed ID: 18044508 [TBL] [Abstract][Full Text] [Related]
3. Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments. Butler BA Water Res; 2011 Jan; 45(1):328-36. PubMed ID: 20709348 [TBL] [Abstract][Full Text] [Related]
4. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Butler BA Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291 [TBL] [Abstract][Full Text] [Related]
5. The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments. Shao H; Butler EC Chemosphere; 2007 Aug; 68(10):1807-13. PubMed ID: 17537483 [TBL] [Abstract][Full Text] [Related]
6. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches. Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116 [TBL] [Abstract][Full Text] [Related]
7. Reductive dehalogenation of halomethanes in iron- and sulfate-reducing sediments. 1. Reactivity pattern analysis. Kenneke JF; Weber EI Environ Sci Technol; 2003 Feb; 37(4):713-20. PubMed ID: 12636269 [TBL] [Abstract][Full Text] [Related]
8. The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments. Hutchins CM; Teasdale PR; Lee J; Simpson SL Chemosphere; 2007 Oct; 69(7):1089-99. PubMed ID: 17572473 [TBL] [Abstract][Full Text] [Related]
9. Elucidating the role of electron shuttles in reductive transformations in anaerobic sediments. Zhang H; Weber EJ Environ Sci Technol; 2009 Feb; 43(4):1042-8. PubMed ID: 19320155 [TBL] [Abstract][Full Text] [Related]
10. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA. Norton SA; Coolidge K; Amirbahman A; Bouchard R; Kopácek J; Reinhardt R Sci Total Environ; 2008 Oct; 404(2-3):276-83. PubMed ID: 18440053 [TBL] [Abstract][Full Text] [Related]
11. Effects of gamma-sterilization on DOC, uranium and arsenic remobilization from organic and microbial rich stream sediments. Schaller J; Weiske A; Dudel EG Sci Total Environ; 2011 Aug; 409(17):3211-4. PubMed ID: 21621815 [TBL] [Abstract][Full Text] [Related]
12. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661 [TBL] [Abstract][Full Text] [Related]
13. Nitroaromatic reduction kinetics as a function of dominant terminal electron acceptor processes in natural sediments. Hoferkamp LA; Weber EJ Environ Sci Technol; 2006 Apr; 40(7):2206-12. PubMed ID: 16646454 [TBL] [Abstract][Full Text] [Related]
14. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential. Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393 [TBL] [Abstract][Full Text] [Related]
15. Nickel partitioning in formulated and natural freshwater sediments. Doig LE; Liber K Chemosphere; 2006 Feb; 62(6):968-79. PubMed ID: 16122779 [TBL] [Abstract][Full Text] [Related]
16. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh. Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416 [TBL] [Abstract][Full Text] [Related]
17. Biogeochemical controls on hexavalent chromium formation in estuarine sediments. Wadhawan AR; Stone AT; Bouwer EJ Environ Sci Technol; 2013 Aug; 47(15):8220-8. PubMed ID: 23802856 [TBL] [Abstract][Full Text] [Related]
18. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume. Lorah MM; Cozzarelli IM; Böhlke JK J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178 [TBL] [Abstract][Full Text] [Related]
19. Targeting low-arsenic aquifers in Matlab Upazila, Southeastern Bangladesh. von Brömssen M; Jakariya M; Bhattacharya P; Ahmed KM; Hasan MA; Sracek O; Jonsson L; Lundell L; Jacks G Sci Total Environ; 2007 Jul; 379(2-3):121-32. PubMed ID: 17113133 [TBL] [Abstract][Full Text] [Related]
20. Cylindrospermopsin degradation in sediments--the role of temperature, redox conditions, and dissolved organic carbon. Klitzke S; Fastner J Water Res; 2012 Apr; 46(5):1549-55. PubMed ID: 22204940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]