These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

586 related articles for article (PubMed ID: 23088490)

  • 1. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation.
    Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling network topology and mechanical properties of co-assembling peptide hydrogels.
    Boothroyd S; Saiani A; Miller AF
    Biopolymers; 2014 Jun; 101(6):669-80. PubMed ID: 26819975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology.
    Gao J; Tang C; Elsawy MA; Smith AM; Miller AF; Saiani A
    Biomacromolecules; 2017 Mar; 18(3):826-834. PubMed ID: 28068466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel.
    Rughani RV; Salick DA; Lamm MS; Yucel T; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 May; 10(5):1295-304. PubMed ID: 19344123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From fibres to networks using self-assembling peptides.
    Boothroyd S; Millerb AF; Saiani A
    Faraday Discuss; 2013; 166():195-207. PubMed ID: 24611277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and hydrogel formation studies on homologs of a lactoglobulin-derived peptide.
    Guy MM; Voyer N
    Biophys Chem; 2012 Apr; 163-164():1-10. PubMed ID: 22386803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembling peptide nanofiber scaffolds for controlled release governed by gelator design and guest size.
    Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T
    J Control Release; 2010 Nov; 147(3):392-9. PubMed ID: 20709121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembling peptide/thermoresponsive polymer composite hydrogels: effect of peptide-polymer interactions on hydrogel properties.
    Maslovskis A; Guilbaud JB; Grillo I; Hodson N; Miller AF; Saiani A
    Langmuir; 2014 Sep; 30(34):10471-80. PubMed ID: 25095719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of a designed amyloid peptide containing the functional thienylalanine unit.
    Hamley IW; Brown GD; Castelletto V; Cheng G; Venanzi M; Caruso M; Placidi E; Aleman C; Revilla-López G; Zanuy D
    J Phys Chem B; 2010 Aug; 114(32):10674-83. PubMed ID: 20662537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A peptide from human semenogelin I self-assembles into a pH-responsive hydrogel.
    Frohm B; DeNizio JE; Lee DS; Gentile L; Olsson U; Malm J; Akerfeldt KS; Linse S
    Soft Matter; 2015 Jan; 11(2):414-21. PubMed ID: 25408475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Peptide-Polymer Host-Guest Electrostatic Interactions on Self-Assembling Peptide Hydrogels Structural and Mechanical Properties and Polymer Diffusivity.
    Dong S; Chapman SL; Pluen A; Richardson SM; Miller AF; Saiani A
    Biomacromolecules; 2024 Jun; 25(6):3628-3641. PubMed ID: 38771115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new pH and thermo-responsive chiral hydrogel for stimulated release.
    Shankar BV; Patnaik A
    J Phys Chem B; 2007 Aug; 111(31):9294-300. PubMed ID: 17629325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH.
    Naskar J; Palui G; Banerjee A
    J Phys Chem B; 2009 Sep; 113(35):11787-92. PubMed ID: 19708711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoreversible protein hydrogel as cell scaffold.
    Yan H; Saiani A; Gough JE; Miller AF
    Biomacromolecules; 2006 Oct; 7(10):2776-82. PubMed ID: 17025352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and stability of nanofibers from a milk-derived peptide.
    Guy MM; Tremblay M; Voyer N; Gauthier SF; Pouliot Y
    J Agric Food Chem; 2011 Jan; 59(2):720-6. PubMed ID: 21182295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.