BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23088891)

  • 1. Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening.
    Hughes NM; Carpenter KL; Cannon JG
    J Plant Physiol; 2013 Jan; 170(2):230-3. PubMed ID: 23088891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association between winter anthocyanin production and drought stress in angiosperm evergreen species.
    Hughes NM; Reinhardt K; Feild TS; Gerardi AR; Smith WK
    J Exp Bot; 2010 Jun; 61(6):1699-709. PubMed ID: 20202995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Support for a photoprotective function of winter leaf reddening in nitrogen-deficient individuals of Lonicera japonica.
    Carpenter KL; Keidel TS; Pihl MC; Hughes NM
    Molecules; 2014 Nov; 19(11):17810-28. PubMed ID: 25372396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf osmotic potential of Eucalyptus hybrids responds differently to freezing and drought, with little clonal variation.
    Callister AN; Arndt SK; Ades PK; Merchant A; Rowell D; Adams MA
    Tree Physiol; 2008 Aug; 28(8):1297-304. PubMed ID: 18519261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata.
    Hughes NM; Neufeld HS; Burkey KO
    New Phytol; 2005 Dec; 168(3):575-87. PubMed ID: 16313641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species.
    Hughes NM; Burkey KO; Cavender-Bares J; Smith WK
    J Exp Bot; 2012 Mar; 63(5):1895-905. PubMed ID: 22162871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal variations in water relations in current-year leaves of evergreen trees with delayed greening.
    Harayama H; Ikeda T; Ishida A; Yamamoto S
    Tree Physiol; 2006 Aug; 26(8):1025-33. PubMed ID: 16651252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient winter leaf reddening in Cistus creticus characterizes weak (stress-sensitive) individuals, yet anthocyanins cannot alleviate the adverse effects on photosynthesis.
    Zeliou K; Manetas Y; Petropoulou Y
    J Exp Bot; 2009; 60(11):3031-42. PubMed ID: 19420284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the Key Genes Associated with Anthocyanin Accumulation during Inner Leaf Reddening in Ornamental Kale (
    Zou J; Gong Z; Liu Z; Ren J; Feng H
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in Damask rose.
    Al-Yasi H; Attia H; Alamer K; Hassan F; Ali E; Elshazly S; Siddique KHM; Hessini K
    Plant Physiol Biochem; 2020 May; 150():133-139. PubMed ID: 32142986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites.
    Szota C; Farrell C; Koch JM; Lambers H; Veneklaas EJ
    Tree Physiol; 2011 Oct; 31(10):1052-66. PubMed ID: 21908435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes).
    Ramírez-Valiente JA; Koehler K; Cavender-Bares J
    Tree Physiol; 2015 May; 35(5):521-34. PubMed ID: 25939867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific leaf metabolic changes that underlie adjustment of osmotic potential in response to drought by four Quercus species.
    Aranda I; Cadahía E; Fernández de Simón B
    Tree Physiol; 2021 May; 41(5):728-743. PubMed ID: 33231684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Winter leaf reddening in 'evergreen' species.
    Hughes NM
    New Phytol; 2011 May; 190(3):573-81. PubMed ID: 21375534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid changes in leaf elongation, ABA and water status during the recovery phase following application of water stress in two durum wheat varieties differing in drought tolerance.
    Mahdid M; Kameli A; Ehlert C; Simonneau T
    Plant Physiol Biochem; 2011 Oct; 49(10):1077-83. PubMed ID: 21868244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal photosynthesis and anthocyanin production in 10 broadleaf evergreen species.
    Hughes NM; Smith WK
    Funct Plant Biol; 2008 Jan; 34(12):1072-1079. PubMed ID: 32689437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf water relations and osmotic adjustment of Canada Western Red Spring wheat cultivars subjected to drought.
    Sharma G; Brar GS; Knipfer T
    Funct Plant Biol; 2023 Dec; 50(12):1037-1046. PubMed ID: 37814368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra-species variation in transient accumulation of leaf anthocyanins in Cistus creticus during winter: evidence that anthocyanins may compensate for an inherent photosynthetic and photoprotective inferiority of the red-leaf phenotype.
    Kytridis VP; Karageorgou P; Levizou E; Manetas Y
    J Plant Physiol; 2008 Jun; 165(9):952-9. PubMed ID: 17923168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecophysiological analysis of woody species in contrasting temperate communities during wet and dry years.
    Kubiske ME; Abrams MD
    Oecologia; 1994 Aug; 98(3-4):303-312. PubMed ID: 28313906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage.
    Nio SA; Cawthray GR; Wade LJ; Colmer TD
    Plant Physiol Biochem; 2011 Oct; 49(10):1126-37. PubMed ID: 21741263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.