These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23089227)

  • 1. Chloride transport in functionally active phagosomes isolated from Human neutrophils.
    Aiken ML; Painter RG; Zhou Y; Wang G
    Free Radic Biol Med; 2012 Dec; 53(12):2308-17. PubMed ID: 23089227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis transmembrane conductance regulator recruitment to phagosomes in neutrophils.
    Zhou Y; Song K; Painter RG; Aiken M; Reiser J; Stanton BA; Nauseef WM; Wang G
    J Innate Immun; 2013; 5(3):219-30. PubMed ID: 23486169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CFTR-mediated halide transport in phagosomes of human neutrophils.
    Painter RG; Marrero L; Lombard GA; Valentine VG; Nauseef WM; Wang G
    J Leukoc Biol; 2010 May; 87(5):933-42. PubMed ID: 20089668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride flux in phagocytes.
    Wang G
    Immunol Rev; 2016 Sep; 273(1):219-31. PubMed ID: 27558337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneity of hypochlorous acid production in individual neutrophil phagosomes revealed by a rhodamine-based probe.
    Albrett AM; Ashby LV; Dickerhof N; Kettle AJ; Winterbourn CC
    J Biol Chem; 2018 Oct; 293(40):15715-15724. PubMed ID: 30135208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFTR Expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis.
    Painter RG; Valentine VG; Lanson NA; Leidal K; Zhang Q; Lombard G; Thompson C; Viswanathan A; Nauseef WM; Wang G; Wang G
    Biochemistry; 2006 Aug; 45(34):10260-9. PubMed ID: 16922501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of
    Dickerhof N; Isles V; Pattemore P; Hampton MB; Kettle AJ
    J Biol Chem; 2019 Sep; 294(36):13502-13514. PubMed ID: 31341024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox reactions and microbial killing in the neutrophil phagosome.
    Winterbourn CC; Kettle AJ
    Antioxid Redox Signal; 2013 Feb; 18(6):642-60. PubMed ID: 22881869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils.
    Painter RG; Bonvillain RW; Valentine VG; Lombard GA; LaPlace SG; Nauseef WM; Wang G
    J Leukoc Biol; 2008 Jun; 83(6):1345-53. PubMed ID: 18353929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases.
    El Chemaly A; Nunes P; Jimaja W; Castelbou C; Demaurex N
    J Leukoc Biol; 2014 May; 95(5):827-839. PubMed ID: 24415791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CFTR targeting during activation of human neutrophils.
    Ng HP; Valentine VG; Wang G
    J Leukoc Biol; 2016 Dec; 100(6):1413-1424. PubMed ID: 27406994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing.
    Winterbourn CC; Hampton MB; Livesey JH; Kettle AJ
    J Biol Chem; 2006 Dec; 281(52):39860-9. PubMed ID: 17074761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. V-ATPase-mediated phagosomal acidification is impaired by Streptococcus pyogenes through Mga-regulated surface proteins.
    Nordenfelt P; Grinstein S; Björck L; Tapper H
    Microbes Infect; 2012 Nov; 14(14):1319-29. PubMed ID: 22981599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of bacillithiol during killing of Staphylococcus aureus USA300 inside neutrophil phagosomes.
    Ashby LV; Springer R; Loi VV; Antelmann H; Hampton MB; Kettle AJ; Dickerhof N
    J Leukoc Biol; 2022 Oct; 112(4):591-605. PubMed ID: 35621076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein chlorination in neutrophil phagosomes and correlation with bacterial killing.
    Green JN; Kettle AJ; Winterbourn CC
    Free Radic Biol Med; 2014 Dec; 77():49-56. PubMed ID: 25236747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the role of cystic fibrosis transmembrane conductance regulator and counterion permeability in the pH regulation of endocytic organelles.
    Barriere H; Bagdany M; Bossard F; Okiyoneda T; Wojewodka G; Gruenert D; Radzioch D; Lukacs GL
    Mol Biol Cell; 2009 Jul; 20(13):3125-41. PubMed ID: 19420138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secretion and inactivation of myeloperoxidase by isolated neutrophils.
    King CC; Jefferson MM; Thomas EL
    J Leukoc Biol; 1997 Mar; 61(3):293-302. PubMed ID: 9060452
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Parker HA; Dickerhof N; Forrester L; Ryburn H; Smyth L; Messens J; Aung HL; Cook GM; Kettle AJ; Hampton MB
    J Immunol; 2021 Apr; 206(8):1901-1912. PubMed ID: 33753427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cystic fibrosis transmembrane conductance regulator-independent phagosomal acidification in macrophages.
    Haggie PM; Verkman AS
    J Biol Chem; 2007 Oct; 282(43):31422-8. PubMed ID: 17724021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human neutrophils use the myeloperoxidase-hydrogen peroxide-chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis.
    Rosen H; Crowley JR; Heinecke JW
    J Biol Chem; 2002 Aug; 277(34):30463-8. PubMed ID: 12060654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.