BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23089556)

  • 1. Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp.
    Manda BM; Blok K; Patel MK
    Sci Total Environ; 2012 Nov; 439():307-20. PubMed ID: 23089556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental assessment of recycled printing and writing paper: a case study in China.
    Hong J; Li X
    Waste Manag; 2012 Feb; 32(2):264-70. PubMed ID: 22040712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.
    Singh A; Pant D; Korres NE; Nizami AS; Prasad S; Murphy JD
    Bioresour Technol; 2010 Jul; 101(13):5003-12. PubMed ID: 20015644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of paper: accounting of greenhouse gases and global warming contributions.
    Merrild H; Damgaard A; Christensen TH
    Waste Manag Res; 2009 Nov; 27(8):746-53. PubMed ID: 19854817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.
    Manfredi S; Christensen TH
    Waste Manag; 2009 Jan; 29(1):32-43. PubMed ID: 18445517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative life-cycle assessments for biomass-to-ethanol production from different regional feedstocks.
    Kemppainen AJ; Shonnard DR
    Biotechnol Prog; 2005; 21(4):1075-84. PubMed ID: 16080686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and applications.
    Rebitzer G; Ekvall T; Frischknecht R; Hunkeler D; Norris G; Rydberg T; Schmidt WP; Suh S; Weidema BP; Pennington DW
    Environ Int; 2004 Jul; 30(5):701-20. PubMed ID: 15051246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the United States.
    Heller MC; Keoleian GA
    Environ Sci Technol; 2011 Mar; 45(5):1903-10. PubMed ID: 21348530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change.
    Klein D; Wolf C; Schulz C; Weber-Blaschke G
    Sci Total Environ; 2016 Jan; 539():45-60. PubMed ID: 26352646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.
    Zhao W; van der Voet E; Zhang Y; Huppes G
    Sci Total Environ; 2009 Feb; 407(5):1517-26. PubMed ID: 19068268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life cycle greenhouse gas emissions of anesthetic drugs.
    Sherman J; Le C; Lamers V; Eckelman M
    Anesth Analg; 2012 May; 114(5):1086-90. PubMed ID: 22492186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada.
    Zhang Y; McKechnie J; Cormier D; Lyng R; Mabee W; Ogino A; Maclean HL
    Environ Sci Technol; 2010 Jan; 44(1):538-44. PubMed ID: 19961171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment.
    van der Werf HM; Kanyarushoki C; Corson MS
    J Environ Manage; 2009 Aug; 90(11):3643-52. PubMed ID: 19664872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing GHG emissions, ecological footprint, and water linkage for different fuels.
    Chavez-Rodriguez MF; Nebra SA
    Environ Sci Technol; 2010 Dec; 44(24):9252-7. PubMed ID: 21105738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process modeling and analysis of pulp mill-based integrated biorefinery with hemicellulose pre-extraction for ethanol production: a comparative study.
    Huang HJ; Ramaswamy S; Al-Dajani WW; Tschirner U
    Bioresour Technol; 2010 Jan; 101(2):624-31. PubMed ID: 19767201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of aviation non-CO₂ combustion effects on the environmental feasibility of alternative jet fuels.
    Stratton RW; Wolfe PJ; Hileman JI
    Environ Sci Technol; 2011 Dec; 45(24):10736-43. PubMed ID: 22106939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle implications of urban green infrastructure.
    Spatari S; Yu Z; Montalto FA
    Environ Pollut; 2011; 159(8-9):2174-9. PubMed ID: 21330022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative life cycle assessment of disposable and reusable laryngeal mask airways.
    Eckelman M; Mosher M; Gonzalez A; Sherman J
    Anesth Analg; 2012 May; 114(5):1067-72. PubMed ID: 22492190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.