These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Investigation on RAFT Polymerization of a Y-Shaped Amphiphilic Fluorinated Monomer and Anti-Fog and Oil-Repellent Properties of the Polymers. Wang Y; Dong Q; Wang Y; Wang H; Li G; Bai R Macromol Rapid Commun; 2010 Oct; 31(20):1816-21. PubMed ID: 21567599 [TBL] [Abstract][Full Text] [Related]
3. ATRP synthesis of amphiphilic random, gradient, and block copolymers of 2-(dimethylamino)ethyl methacrylate and n-butyl methacrylate in aqueous media. Lee SB; Russell AJ; Matyjaszewski K Biomacromolecules; 2003; 4(5):1386-93. PubMed ID: 12959610 [TBL] [Abstract][Full Text] [Related]
4. Amphiphilic poly(D- or L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers: controlled synthesis, characterization, and stereocomplex formation. Spasova M; Mespouille L; Coulembier O; Paneva D; Manolova N; Rashkov I; Dubois P Biomacromolecules; 2009 May; 10(5):1217-23. PubMed ID: 19331403 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and supramolecular organization of amphiphilic diblock copolymers combining poly(N,N-dimethylamino-2-ethyl methacrylate) and poly(epsilon-caprolactone). Bougard F; Jeusette M; Mespouille L; Dubois P; Lazzaroni R Langmuir; 2007 Feb; 23(5):2339-45. PubMed ID: 17309198 [TBL] [Abstract][Full Text] [Related]
6. Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. McCormick CL; Lowe AB Acc Chem Res; 2004 May; 37(5):312-25. PubMed ID: 15147172 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Yusa S; Fukuda K; Yamamoto T; Ishihara K; Morishima Y Biomacromolecules; 2005; 6(2):663-70. PubMed ID: 15762627 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of versatile thiol-reactive polymer scaffolds via RAFT polymerization. Wong L; Boyer C; Jia Z; Zareie HM; Davis TP; Bulmus V Biomacromolecules; 2008 Jul; 9(7):1934-44. PubMed ID: 18564875 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers. Narain R; Armes SP Biomacromolecules; 2003; 4(6):1746-58. PubMed ID: 14606905 [TBL] [Abstract][Full Text] [Related]
10. Shell-cross-linked micelles containing cationic polymers synthesized via the RAFT process: toward a more biocompatible gene delivery system. Zhang L; Nguyen TL; Bernard J; Davis TP; Barner-Kowollik C; Stenzel MH Biomacromolecules; 2007 Sep; 8(9):2890-901. PubMed ID: 17691844 [TBL] [Abstract][Full Text] [Related]
11. The effect of RAFT-derived cationic block copolymer structure on gene silencing efficiency. Hinton TM; Guerrero-Sanchez C; Graham JE; Le T; Muir BW; Shi S; Tizard ML; Gunatillake PA; McLean KM; Thang SH Biomaterials; 2012 Oct; 33(30):7631-42. PubMed ID: 22831854 [TBL] [Abstract][Full Text] [Related]
12. Effect of composition of PDMAEMA-b-PAA block copolymers on their pH- and temperature-responsive behaviors. Han X; Zhang X; Zhu H; Yin Q; Liu H; Hu Y Langmuir; 2013 Jan; 29(4):1024-34. PubMed ID: 23289767 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of amphiphilic tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization directly initiating from cyclic precursors and their application as drug nanocarriers. Wan X; Liu T; Liu S Biomacromolecules; 2011 Apr; 12(4):1146-54. PubMed ID: 21332208 [TBL] [Abstract][Full Text] [Related]
14. Controlled synthesis and self-assembly of dopamine-containing copolymer for honeycomb-like porous hybrid particles. Wang J; Zhu H; Chen G; Hu Z; Weng Y; Wang X; Zhang W Macromol Rapid Commun; 2014 Jun; 35(11):1061-7. PubMed ID: 24700744 [TBL] [Abstract][Full Text] [Related]
15. Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers. Bauri K; Roy SG; Pant S; De P Langmuir; 2013 Feb; 29(8):2764-74. PubMed ID: 23346856 [TBL] [Abstract][Full Text] [Related]
16. Highly tunable photoluminescent properties of amphiphilic conjugated block copolymers. Park SJ; Kang SG; Fryd M; Saven JG; Park SJ J Am Chem Soc; 2010 Jul; 132(29):9931-3. PubMed ID: 20608674 [TBL] [Abstract][Full Text] [Related]
17. Brush-type amphiphilic diblock copolymers from "living"/controlled radical polymerizations and their aggregation behavior. Cheng Z; Zhu X; Kang ET; Neoh KG Langmuir; 2005 Aug; 21(16):7180-5. PubMed ID: 16042439 [TBL] [Abstract][Full Text] [Related]
18. Assessment of new biocompatible poly(N-(morpholino)ethyl methacrylate)-based copolymers by transfection of immortalized keratinocytes. Van Overstraeten-Schlögel N; Shim YH; Tevel V; Piel G; Piette J; Dubois P; Raes M Drug Deliv; 2012 Feb; 19(2):112-22. PubMed ID: 22239537 [TBL] [Abstract][Full Text] [Related]
19. Multicompartment micelles from hyperbranched star-block copolymers containing polycations and fluoropolymer segment. Mao J; Ni P; Mai Y; Yan D Langmuir; 2007 Apr; 23(9):5127-34. PubMed ID: 17381145 [TBL] [Abstract][Full Text] [Related]
20. Cationic amphiphilic star and linear block copolymers: synthesis, self-assembly, and in vitro gene transfection. Alhoranta AM; Lehtinen JK; Urtti AO; Butcher SJ; Aseyev VO; Tenhu HJ Biomacromolecules; 2011 Sep; 12(9):3213-22. PubMed ID: 21761847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]