These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 23089997)

  • 1. From metamaterials to metadevices.
    Zheludev NI; Kivshar YS
    Nat Mater; 2012 Nov; 11(11):917-24. PubMed ID: 23089997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating microsystems with metamaterials towards metadevices.
    Zhao X; Duan G; Li A; Chen C; Zhang X
    Microsyst Nanoeng; 2019; 5():5. PubMed ID: 31057932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically switchable metadevices via graphene.
    Balci O; Kakenov N; Karademir E; Balci S; Cakmakyapan S; Polat EO; Caglayan H; Özbay E; Kocabas C
    Sci Adv; 2018 Jan; 4(1):eaao1749. PubMed ID: 29322094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications.
    Xu C; Ren Z; Wei J; Lee C
    iScience; 2022 Feb; 25(2):103799. PubMed ID: 35198867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.
    Lee S; Kang B; Keum H; Ahmed N; Rogers JA; Ferreira PM; Kim S; Min B
    Sci Rep; 2016 Jun; 6():27621. PubMed ID: 27283594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials.
    Seren HR; Zhang J; Keiser GR; Maddox SJ; Zhao X; Fan K; Bank SR; Zhang X; Averitt RD
    Light Sci Appl; 2016 May; 5(5):e16078. PubMed ID: 30167165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations.
    Kim WY; Kim HD; Kim TT; Park HS; Lee K; Choi HJ; Lee SH; Son J; Park N; Min B
    Nat Commun; 2016 Jan; 7():10429. PubMed ID: 26813710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices.
    Ali A; Mitra A; Aïssa B
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.
    Kaina N; Lemoult F; Fink M; Lerosey G
    Nature; 2015 Sep; 525(7567):77-81. PubMed ID: 26333466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of terahertz nonlinear transmission with electrically gated graphene metadevices.
    Choi HJ; Baek IH; Kang BJ; Kim HD; Oh SS; Hamm JM; Pusch A; Park J; Lee K; Son J; Jeong YU; Hess O; Rotermund F; Min B
    Sci Rep; 2017 Feb; 7():42833. PubMed ID: 28216677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.
    Decker M; Staude I; Shishkin II; Samusev KB; Parkinson P; Sreenivasan VK; Minovich A; Miroshnichenko AE; Zvyagin A; Jagadish C; Neshev DN; Kivshar YS
    Nat Commun; 2013; 4():2949. PubMed ID: 24335832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric excitation of surface plasmons by dark mode coupling.
    Zhang X; Xu Q; Li Q; Xu Y; Gu J; Tian Z; Ouyang C; Liu Y; Zhang S; Zhang X; Han J; Zhang W
    Sci Adv; 2016 Feb; 2(2):e1501142. PubMed ID: 26989777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Control of Nanomechanical Brownian Motion Eigenfrequencies in Metamaterials.
    Li J; MacDonald KF; Zheludev NI
    Nano Lett; 2022 Jun; 22(11):4301-4306. PubMed ID: 35609218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear Modulation of Plasmonic Resonances in Graphene-Integrated Triangular Dimers at Terahertz Frequencies.
    Li Q; Wang S; Chen T
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetoelastic metamaterials.
    Lapine M; Shadrivov IV; Powell DA; Kivshar YS
    Nat Mater; 2011 Nov; 11(1):30-3. PubMed ID: 22081080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robustly printable freeform thermal metamaterials.
    Sha W; Xiao M; Zhang J; Ren X; Zhu Z; Zhang Y; Xu G; Li H; Liu X; Chen X; Gao L; Qiu CW; Hu R
    Nat Commun; 2021 Dec; 12(1):7228. PubMed ID: 34893631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient Loss-Induced Non-Hermitian Degeneracies for Ultrafast Terahertz Metadevices.
    He W; Hu Y; Ren Z; Hu S; Yu Z; Wan S; Cheng X; Jiang T
    Adv Sci (Weinh); 2023 Dec; 10(36):e2304972. PubMed ID: 37897321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced Nonlinear Mixing of Terahertz Dipole Resonances in Graphene Metadevices.
    In C; Kim HD; Min B; Choi H
    Adv Mater; 2016 Feb; 28(7):1495-500. PubMed ID: 26639550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic metamaterials: a new class of materials for manipulating light waves.
    Iwanaga M
    Sci Technol Adv Mater; 2012 Oct; 13(5):053002. PubMed ID: 27877512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.