These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23090057)

  • 1. Evidence for opponent process analysis of sound source location in humans.
    Briley PM; Kitterick PT; Summerfield AQ
    J Assoc Res Otolaryngol; 2013 Feb; 14(1):83-101. PubMed ID: 23090057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opponent Coding of Sound Location (Azimuth) in Planum Temporale is Robust to Sound-Level Variations.
    Derey K; Valente G; de Gelder B; Formisano E
    Cereb Cortex; 2016 Jan; 26(1):450-464. PubMed ID: 26545618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for opponent-channel coding of interaural time differences in human auditory cortex.
    Magezi DA; Krumbholz K
    J Neurophysiol; 2010 Oct; 104(4):1997-2007. PubMed ID: 20702739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location coding by opponent neural populations in the auditory cortex.
    Stecker GC; Harrington IA; Middlebrooks JC
    PLoS Biol; 2005 Mar; 3(3):e78. PubMed ID: 15736980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The opponent channel population code of sound location is an efficient representation of natural binaural sounds.
    Młynarski W
    PLoS Comput Biol; 2015 May; 11(5):e1004294. PubMed ID: 25996373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory spatial processing in the human cortex.
    Salminen NH; Tiitinen H; May PJ
    Neuroscientist; 2012 Dec; 18(6):602-12. PubMed ID: 22492193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences.
    Ozmeral EJ; Eddins DA; Eddins AC
    J Neurophysiol; 2019 Aug; 122(2):737-748. PubMed ID: 31242052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological Evidence for a Midline Spatial Channel in Human Auditory Cortex.
    Briley PM; Goman AM; Summerfield AQ
    J Assoc Res Otolaryngol; 2016 Aug; 17(4):331-40. PubMed ID: 27164943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A population rate code of auditory space in the human cortex.
    Salminen NH; May PJ; Alku P; Tiitinen H
    PLoS One; 2009 Oct; 4(10):e7600. PubMed ID: 19855836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread and Opponent fMRI Signals Represent Sound Location in Macaque Auditory Cortex.
    Ortiz-Rios M; Azevedo FAC; Kuśmierek P; Balla DZ; Munk MH; Keliris GA; Logothetis NK; Rauschecker JP
    Neuron; 2017 Feb; 93(4):971-983.e4. PubMed ID: 28190642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Sound Localization Sharpens Spatial Tuning in Human Primary Auditory Cortex.
    van der Heijden K; Rauschecker JP; Formisano E; Valente G; de Gelder B
    J Neurosci; 2018 Oct; 38(40):8574-8587. PubMed ID: 30126968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed coding of sound locations in the auditory cortex.
    Stecker GC; Middlebrooks JC
    Biol Cybern; 2003 Nov; 89(5):341-9. PubMed ID: 14669014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.
    Higgins NC; McLaughlin SA; Rinne T; Stecker GC
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7602-E7611. PubMed ID: 28827357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Codes for sound-source location in nontonotopic auditory cortex.
    Middlebrooks JC; Xu L; Eddins AC; Green DM
    J Neurophysiol; 1998 Aug; 80(2):863-81. PubMed ID: 9705474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetries in the representation of space in the human auditory cortex depend on the global stimulus context.
    Briley PM; Goman AM; Summerfield AQ
    Neuroreport; 2016 Mar; 27(4):242-6. PubMed ID: 26730514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Egocentric and allocentric representations in auditory cortex.
    Town SM; Brimijoin WO; Bizley JK
    PLoS Biol; 2017 Jun; 15(6):e2001878. PubMed ID: 28617796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory tuning for spatial cues in the barn owl basal ganglia.
    Cohen YE; Knudsen EI
    J Neurophysiol; 1994 Jul; 72(1):285-98. PubMed ID: 7965012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurons in primary auditory cortex represent sound source location in a cue-invariant manner.
    Wood KC; Town SM; Bizley JK
    Nat Commun; 2019 Jul; 10(1):3019. PubMed ID: 31289272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced temporal processing in older, normal-hearing listeners evident from electrophysiological responses to shifts in interaural time difference.
    Ozmeral EJ; Eddins DA; Eddins AC
    J Neurophysiol; 2016 Dec; 116(6):2720-2729. PubMed ID: 27683889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Hemispheric ITD Tuning from the Readout of a Neural Map: Commonalities of Proposed Coding Schemes in Birds and Mammals.
    Peña JL; Cazettes F; Beckert MV; Fischer BJ
    J Neurosci; 2019 Nov; 39(46):9053-9061. PubMed ID: 31570537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.