These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 23090060)
1. Tuning the magnetic anisotropy in coordination nanoparticles: random distribution versus core-shell architecture. Prado Y; Dia N; Lisnard L; Rogez G; Brisset F; Catala L; Mallah T Chem Commun (Camb); 2012 Dec; 48(93):11455-7. PubMed ID: 23090060 [TBL] [Abstract][Full Text] [Related]
2. Magnetic anisotropy of cyanide-bridged core and core-shell coordination nanoparticles probed by X-ray magnetic circular dichroism. Prado Y; Arrio MA; Volatron F; Otero E; Cartier dit Moulin C; Sainctavit P; Catala L; Mallah T Chemistry; 2013 May; 19(21):6685-94. PubMed ID: 23520017 [TBL] [Abstract][Full Text] [Related]
4. Strong interfacial coupling through exchange interactions in soft/hard core-shell nanoparticles as a function of cationic distribution. Sartori K; Cotin G; Bouillet C; Halté V; Bégin-Colin S; Choueikani F; Pichon BP Nanoscale; 2019 Jul; 11(27):12946-12958. PubMed ID: 31259329 [TBL] [Abstract][Full Text] [Related]
5. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. Song Q; Zhang ZJ J Am Chem Soc; 2012 Jun; 134(24):10182-90. PubMed ID: 22621435 [TBL] [Abstract][Full Text] [Related]
11. Core-shell-structured magnetic ternary nanocubes. Wang L; Wang X; Luo J; Wanjala BN; Wang C; Chernova NA; Engelhard MH; Liu Y; Bae IT; Zhong CJ J Am Chem Soc; 2010 Dec; 132(50):17686-9. PubMed ID: 21121606 [TBL] [Abstract][Full Text] [Related]
12. Magnetic entropy change in core/shell and hollow nanoparticles. Chandra S; Biswas A; Khurshid H; Li W; Hadjipanayis GC; Srikanth H J Phys Condens Matter; 2013 Oct; 25(42):426003. PubMed ID: 24077419 [TBL] [Abstract][Full Text] [Related]
13. Room-temperature-persistent magnetic interaction between coordination complexes and nanoparticles in maghemite-based nanohybrids. Curti L; Prado Y; Michel A; Talbot D; Baptiste B; Otero E; Ohresser P; Journaux Y; Cartier-Dit-Moulin C; Dupuis V; Fleury B; Sainctavit P; Arrio MA; Fresnais J; Lisnard L Nanoscale; 2024 Jun; 16(22):10607-10617. PubMed ID: 38758111 [TBL] [Abstract][Full Text] [Related]
14. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles. Fabris F; Lima E; De Biasi E; Troiani HE; Vásquez Mansilla M; Torres TE; Fernández Pacheco R; Ibarra MR; Goya GF; Zysler RD; Winkler EL Nanoscale; 2019 Feb; 11(7):3164-3172. PubMed ID: 30520920 [TBL] [Abstract][Full Text] [Related]
15. Wrinkle-assisted linear assembly of hard-core/soft-shell particles: impact of the soft shell on the local structure. Müller M; Karg M; Fortini A; Hellweg T; Fery A Nanoscale; 2012 Apr; 4(7):2491-9. PubMed ID: 22395669 [TBL] [Abstract][Full Text] [Related]
16. Characterization of superparamagnetic "core-shell" nanoparticles and monitoring their anisotropic phase transition to ferromagnetic "solid solution" nanoalloys. Park JI; Kim MG; Jun YW; Lee JS; Lee WR; Cheon J J Am Chem Soc; 2004 Jul; 126(29):9072-8. PubMed ID: 15264840 [TBL] [Abstract][Full Text] [Related]
17. Room Temperature Blocked Magnetic Nanoparticles Based on Ferrite Promoted by a Three-Step Thermal Decomposition Process. Sartori K; Choueikani F; Gloter A; Begin-Colin S; Taverna D; Pichon BP J Am Chem Soc; 2019 Jun; 141(25):9783-9787. PubMed ID: 31149820 [TBL] [Abstract][Full Text] [Related]
19. Monodispersed core-shell Fe3O4@Au nanoparticles. Wang L; Luo J; Fan Q; Suzuki M; Suzuki IS; Engelhard MH; Lin Y; Kim N; Wang JQ; Zhong CJ J Phys Chem B; 2005 Nov; 109(46):21593-601. PubMed ID: 16853803 [TBL] [Abstract][Full Text] [Related]
20. Ultrathin Interface Regime of Core-Shell Magnetic Nanoparticles for Effective Magnetism Tailoring. Moon SH; Noh SH; Lee JH; Shin TH; Lim Y; Cheon J Nano Lett; 2017 Feb; 17(2):800-804. PubMed ID: 28045532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]