These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 23090151)
1. Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices. de Souza ML; Corio P; Brolo AG Phys Chem Chem Phys; 2012 Dec; 14(45):15722-8. PubMed ID: 23090151 [TBL] [Abstract][Full Text] [Related]
2. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311 [TBL] [Abstract][Full Text] [Related]
3. High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Wang X; Peng KQ; Pan XJ; Chen X; Yang Y; Li L; Meng XM; Zhang WJ; Lee ST Angew Chem Int Ed Engl; 2011 Oct; 50(42):9861-5. PubMed ID: 21905189 [TBL] [Abstract][Full Text] [Related]
4. Surface-passivated plasmonic nano-pyramids for bulk heterojunction solar cell photocurrent enhancement. Kirkeminde A; Retsch M; Wang Q; Xu G; Hui R; Wu J; Ren S Nanoscale; 2012 Aug; 4(15):4421-5. PubMed ID: 22695531 [TBL] [Abstract][Full Text] [Related]
5. Aluminum nanoparticles for plasmon-improved coupling of light into silicon. Villesen TF; Uhrenfeldt C; Johansen B; Hansen JL; Ulriksen HU; Larsen AN Nanotechnology; 2012 Mar; 23(8):085202. PubMed ID: 22293458 [TBL] [Abstract][Full Text] [Related]
6. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Lin C; Povinelli ML Opt Express; 2009 Oct; 17(22):19371-81. PubMed ID: 19997158 [TBL] [Abstract][Full Text] [Related]
7. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping. Varlamov S; Rao J; Soderstrom T J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108 [TBL] [Abstract][Full Text] [Related]
8. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Mallick SB; Agrawal M; Peumans P Opt Express; 2010 Mar; 18(6):5691-706. PubMed ID: 20389585 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic. Chen MC; Yang YL; Chen SW; Li JH; Aklilu M; Tai Y ACS Appl Mater Interfaces; 2013 Feb; 5(3):511-7. PubMed ID: 23286370 [TBL] [Abstract][Full Text] [Related]
10. Triangular metallic gratings for large absorption enhancement in thin film Si solar cells. Battal E; Yogurt TA; Aygun LE; Okyay AK Opt Express; 2012 Apr; 20(9):9458-64. PubMed ID: 22535035 [TBL] [Abstract][Full Text] [Related]
11. Growth behaviour and plasmon resonance properties of photocatalytically deposited Cu nanoparticles. Kazuma E; Yamaguchi T; Sakai N; Tatsuma T Nanoscale; 2011 Sep; 3(9):3641-5. PubMed ID: 21792447 [TBL] [Abstract][Full Text] [Related]
12. Enhanced UV photoresponse of KrF-laser-synthesized single-wall carbon nanotubes/n-silicon hybrid photovoltaic devices. Le Borgne V; Gautier LA; Castrucci P; Del Gobbo S; De Crescenzi M; El Khakani MA Nanotechnology; 2012 Jun; 23(21):215206. PubMed ID: 22551529 [TBL] [Abstract][Full Text] [Related]
13. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application. Reshak AH; Shahimin MM; Shaari S; Johan N Prog Biophys Mol Biol; 2013 Nov; 113(2):327-32. PubMed ID: 24139943 [TBL] [Abstract][Full Text] [Related]
14. Imprinting localized plasmons for enhanced solar cells. Dunbar RB; Pfadler T; Lal NN; Baumberg JJ; Schmidt-Mende L Nanotechnology; 2012 Sep; 23(38):385202. PubMed ID: 22948008 [TBL] [Abstract][Full Text] [Related]
15. Core-shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays. Song T; Zhang F; Lei X; Xu Y; Lee S; Sun B Nanoscale; 2012 Feb; 4(4):1336-43. PubMed ID: 22261973 [TBL] [Abstract][Full Text] [Related]
16. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. Sugawa K; Tamura T; Tahara H; Yamaguchi D; Akiyama T; Otsuki J; Kusaka Y; Fukuda N; Ushijima H ACS Nano; 2013 Nov; 7(11):9997-10010. PubMed ID: 24090528 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules. Leem JW; Choi M; Yu JS ACS Appl Mater Interfaces; 2015 Feb; 7(4):2349-58. PubMed ID: 25622310 [TBL] [Abstract][Full Text] [Related]
18. Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells. Jeong NC; Prasittichai C; Hupp JT Langmuir; 2011 Dec; 27(23):14609-14. PubMed ID: 21992773 [TBL] [Abstract][Full Text] [Related]
19. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts. Palanchoke U; Jovanov V; Kurz H; Obermeyer P; Stiebig H; Knipp D Opt Express; 2012 Mar; 20(6):6340-7. PubMed ID: 22418515 [TBL] [Abstract][Full Text] [Related]
20. Concentration effect of copper loading on the reductive dechlorination of tetrachloroethylene by zerovalent silicon. Lee CC; Doong RA Water Sci Technol; 2010; 62(1):28-35. PubMed ID: 20595750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]