These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23090396)
1. Endo-β-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity. Gonçalves AM; Silva CS; Madeira TI; Coelho R; de Sanctis D; San Romão MV; Bento I Acta Crystallogr D Biol Crystallogr; 2012 Nov; 68(Pt 11):1468-78. PubMed ID: 23090396 [TBL] [Abstract][Full Text] [Related]
2. Structure-based investigation into the functional roles of the extended loop and substrate-recognition sites in an endo-β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Kim MK; An YJ; Song JM; Jeong CS; Kang MH; Kwon KK; Lee YH; Cha SS Proteins; 2014 Nov; 82(11):3217-23. PubMed ID: 25082572 [TBL] [Abstract][Full Text] [Related]
3. From structure to function: insights into the catalytic substrate specificity and thermostability displayed by Bacillus subtilis mannanase BCman. Yan XX; An XM; Gui LL; Liang DC J Mol Biol; 2008 Jun; 379(3):535-44. PubMed ID: 18455734 [TBL] [Abstract][Full Text] [Related]
4. Structural insights into the substrate specificity and transglycosylation activity of a fungal glycoside hydrolase family 5 β-mannosidase. Zhou P; Liu Y; Yan Q; Chen Z; Qin Z; Jiang Z Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2970-82. PubMed ID: 25372687 [TBL] [Abstract][Full Text] [Related]
5. Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-β-D-mannanase. dos Santos CR; Paiva JH; Meza AN; Cota J; Alvarez TM; Ruller R; Prade RA; Squina FM; Murakami MT J Struct Biol; 2012 Feb; 177(2):469-76. PubMed ID: 22155669 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of exo-β-mannanase activity in the GH2 family. Domingues MN; Souza FHM; Vieira PS; de Morais MAB; Zanphorlin LM; Dos Santos CR; Pirolla RAS; Honorato RV; de Oliveira PSL; Gozzo FC; Murakami MT J Biol Chem; 2018 Aug; 293(35):13636-13649. PubMed ID: 29997257 [TBL] [Abstract][Full Text] [Related]
7. Structural insights into the catalytic mechanism of a novel glycoside hydrolase family 113 β-1,4-mannanase from You X; Qin Z; Yan Q; Yang S; Li Y; Jiang Z J Biol Chem; 2018 Jul; 293(30):11746-11757. PubMed ID: 29871927 [TBL] [Abstract][Full Text] [Related]
8. Structural and biochemical insights into the substrate-binding mechanism of a novel glycoside hydrolase family 134 β-mannanase. You X; Qin Z; Li YX; Yan QJ; Li B; Jiang ZQ Biochim Biophys Acta Gen Subj; 2018 Jun; 1862(6):1376-1388. PubMed ID: 29550433 [TBL] [Abstract][Full Text] [Related]
9. Rational engineering of mannosyl binding in the distal glycone subsites of Cellulomonas fimi endo-beta-1,4-mannanase: mannosyl binding promoted at subsite -2 and demoted at subsite -3. Hekmat O; Lo Leggio L; Rosengren A; Kamarauskaite J; Kolenova K; Stålbrand H Biochemistry; 2010 Jun; 49(23):4884-96. PubMed ID: 20426480 [TBL] [Abstract][Full Text] [Related]
10. Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding. Tunnicliffe RB; Bolam DN; Pell G; Gilbert HJ; Williamson MP J Mol Biol; 2005 Mar; 347(2):287-96. PubMed ID: 15740741 [TBL] [Abstract][Full Text] [Related]
11. Analysis of nasturtium TmNXG1 complexes by crystallography and molecular dynamics provides detailed insight into substrate recognition by family GH16 xyloglucan endo-transglycosylases and endo-hydrolases. Mark P; Baumann MJ; Eklöf JM; Gullfot F; Michel G; Kallas AM; Teeri TT; Brumer H; Czjzek M Proteins; 2009 Jun; 75(4):820-36. PubMed ID: 19004021 [TBL] [Abstract][Full Text] [Related]
12. Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. Dias FM; Vincent F; Pell G; Prates JA; Centeno MS; Tailford LE; Ferreira LM; Fontes CM; Davies GJ; Gilbert HJ J Biol Chem; 2004 Jun; 279(24):25517-26. PubMed ID: 15014076 [TBL] [Abstract][Full Text] [Related]
13. The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. Cartmell A; Topakas E; Ducros VM; Suits MD; Davies GJ; Gilbert HJ J Biol Chem; 2008 Dec; 283(49):34403-13. PubMed ID: 18799462 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure at 1.45-A resolution of the major allergen endo-beta-1,3-glucanase of banana as a molecular basis for the latex-fruit syndrome. Receveur-Bréchot V; Czjzek M; Barre A; Roussel A; Peumans WJ; Van Damme EJ; Rougé P Proteins; 2006 Apr; 63(1):235-42. PubMed ID: 16421930 [TBL] [Abstract][Full Text] [Related]
15. Gene cloning, expression, and X-ray crystallographic analysis of a β-mannanase from Eisenia fetida. Ueda M; Hirano Y; Fukuhara H; Naka Y; Nakazawa M; Sakamoto T; Ogata Y; Tamada T Enzyme Microb Technol; 2018 Oct; 117():15-22. PubMed ID: 30037547 [TBL] [Abstract][Full Text] [Related]
16. The structural analysis and the role of calcium binding site for thermal stability in mannanase. Kumagai Y; Kawakami K; Mukaihara T; Kimura M; Hatanaka T Biochimie; 2012 Dec; 94(12):2783-90. PubMed ID: 23009928 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional crystal structure and enzymic characterization of beta-mannanase Man5A from blue mussel Mytilus edulis. Larsson AM; Anderson L; Xu B; Muñoz IG; Usón I; Janson JC; Stålbrand H; Ståhlberg J J Mol Biol; 2006 Apr; 357(5):1500-10. PubMed ID: 16487541 [TBL] [Abstract][Full Text] [Related]