These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23090401)

  • 21. Analysis of TASSER-based CASP7 protein structure prediction results.
    Zhou H; Pandit SB; Lee SY; Borreguero J; Chen H; Wroblewska L; Skolnick J
    Proteins; 2007; 69 Suppl 8():90-7. PubMed ID: 17705276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SPICKER: a clustering approach to identify near-native protein folds.
    Zhang Y; Skolnick J
    J Comput Chem; 2004 Apr; 25(6):865-71. PubMed ID: 15011258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating quality of template-based protein models by alignment stability.
    Chen H; Kihara D
    Proteins; 2008 May; 71(3):1255-74. PubMed ID: 18041762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating the usefulness of protein structure models for molecular replacement.
    Giorgetti A; Raimondo D; Miele AE; Tramontano A
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii72-6. PubMed ID: 16204129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ab initio discrete molecular dynamics approach to protein folding and aggregation.
    Urbanc B; Borreguero JM; Cruz L; Stanley HE
    Methods Enzymol; 2006; 412():314-38. PubMed ID: 17046666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of VLD (vive la difference) in the molecular-replacement approach: a pipeline.
    Carrozzini B; Cascarano GL; Comunale G; Giacovazzo C; Mazzone A
    Acta Crystallogr D Biol Crystallogr; 2013 Jun; 69(Pt 6):1038-44. PubMed ID: 23695248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison between self-guided Langevin dynamics and molecular dynamics simulations for structure refinement of protein loop conformations.
    Olson MA; Chaudhury S; Lee MS
    J Comput Chem; 2011 Nov; 32(14):3014-22. PubMed ID: 21793008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lattices for ab initio protein structure prediction.
    Pierri CL; De Grassi A; Turi A
    Proteins; 2008 Nov; 73(2):351-61. PubMed ID: 18433064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Benchmarking of TASSER in the ab initio limit.
    Borreguero JM; Skolnick J
    Proteins; 2007 Jul; 68(1):48-56. PubMed ID: 17444524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and benchmarking of TASSER(iter) for the iterative improvement of protein structure predictions.
    Lee SY; Skolnick J
    Proteins; 2007 Jul; 68(1):39-47. PubMed ID: 17469193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics.
    Chen CC; Wei CC; Sun YC; Chen CM
    J Struct Biol; 2008 May; 162(2):237-47. PubMed ID: 18262435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Template-free protein structure prediction and quality assessment with an all-atom free-energy model.
    Gopal SM; Klenin K; Wenzel W
    Proteins; 2009 Nov; 77(2):330-41. PubMed ID: 19422063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase.
    Keskin O
    J Biomol Struct Dyn; 2002 Dec; 20(3):333-45. PubMed ID: 12437372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SimFold energy function for de novo protein structure prediction: consensus with Rosetta.
    Fujitsuka Y; Chikenji G; Takada S
    Proteins; 2006 Feb; 62(2):381-98. PubMed ID: 16294329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MONSSTER: a method for folding globular proteins with a small number of distance restraints.
    Skolnick J; Kolinski A; Ortiz AR
    J Mol Biol; 1997 Jan; 265(2):217-41. PubMed ID: 9020984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent improvements in prediction of protein structure by global optimization of a potential energy function.
    Pillardy J; Czaplewski C; Liwo A; Lee J; Ripoll DR; Kaźmierkiewicz R; Oldziej S; Wedemeyer WJ; Gibson KD; Arnautova YA; Saunders J; Ye YJ; Scheraga HA
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2329-33. PubMed ID: 11226239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GSAFold: a new application of GSA to protein structure prediction.
    Melo MC; Bernardi RC; Fernandes TV; Pascutti PG
    Proteins; 2012 Aug; 80(9):2305-10. PubMed ID: 22622959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strand-loop-strand motifs: prediction of hairpins and diverging turns in proteins.
    Kuhn M; Meiler J; Baker D
    Proteins; 2004 Feb; 54(2):282-8. PubMed ID: 14696190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein structure prediction constrained by solution X-ray scattering data and structural homology identification.
    Zheng W; Doniach S
    J Mol Biol; 2002 Feb; 316(1):173-87. PubMed ID: 11829511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.